2024 Workshop on Gravitational Waves and **High-Performance Computing Geoffrey Lovelace**

August 12, 2024 – August 16, 2024

Welcome to the workshop!

- Please make sure you create a free account at https://cocalc.com
- Workshop supported by the National Science Foundation
- Website with useful materials:

https://geoffrey-lovelace.com/Workshop/2024

- We would like to take some photos during the workshop
- The photos would appear on the Cal State Fullerton website, in news stories about the workshop
- If you would prefer to not have your picture taken, please let me know (message me or speak with me during the break) that you'd like to opt out

Photos

A commonly held inaccurate model of teaching and learning

Joe Reddish, 2001, AAPT, San Diego

Bill Watterson - Calvin and Hobbs

Results from cognitive science and education research

what you already know. Most people learn best when interacting with others.

- Learning requires mental effort.
- New information must link with

Daily schedule

- Morning: 9:30 AM 11:00 AM
- Afternoon I: 12:30 PM 2:00 PM
- Afternoon II: 2:30 PM 4:00 PM

Tentative schedule

- Monday: Powers of 10 & computing, programming with Python
- **Tuesday**: Programming with Python, Unix Command Line, using a supercomputer
- Wednesday: Simulating colliding black holes, black holes, gravitational waves
- **Thursday**: Gravitational-wave research, panel discussion, data center tour (if possible)
- Friday: visualizing colliding black holes, exit survey

About the pace...

- The pace is intense: you'l be learning a lot
- It's normal to feel confused...that's actually what learning feels like
- There is no such thing as a dumb question!!
- You will get the most out of this experience by participating! It's more like learning a sport or a musical instrument or a language or ...

GWT PAC GRAVITATIONAL WAVE Physics and Astronomy Center

Cebreaker

 If you had to gain one superpower, which one would you choose?

Ability to fly

Power to be invisible

Powers of 10

How many meters across is Earth?

106

107

108

109

Powers of 10

How many meters across is Earth?

106

107

108

109

Powers of 10

How many meters is a light year?

1012

108

1016

1020

Powers of 10 & computers

- First entities called "computers" were teams of people
- Divide up the work into operations done in parallel, by hand (perhaps with mechanical aid)
- Redundant calculations to check accuracy
- Since 1700s
- 10⁻¹ to 1 FLOPS / human (decimal operations / second / human)

Image courtesy wikipedia

Fumans

1949 NACA High Speed Flight Station "Computer Room")

Colossus (1942)

- First programmable, digital, electronic computer
- Break codes in World War II Britain
- 5 x 10⁵ FLOPS

Image courtesy wikipedia

First Macintosh • 1 x 10⁶ FLOPS

Image courtesy wikipedia

My first Mac (1984)

My Mac in 2003

• 2 cores

• 1-2 x 10⁹ FLOPS

Image courtesy Apple

My current Mac

Apple M1 Max (10 cores)

• 3 x 10¹¹ FLOPS

Image courtesy Apple

• 6 cores • 1 x 10¹¹ FLOPS

Image courtesy Apple

My iPhone

Images courtesy wikipedia, NASA

perform as many calculations as humans?

For comparison:

Humans alive in 2018: 7.6 x 10⁹ Total humans who ever lived: 10¹¹ Sources: google.com, pro.org

In 1 second, today's high-end smart phones can

 Today's most powerful computers are times more powerful than today's high-end personal computers.

Images courtesy wikipedia, NASA

Ocean supercomputer at Cal State Fullerton

- Supercomputer for Cal State Fullerton Gravitational-Wave Physics and Astronomy Center
- 828 cores
- $\approx 2 \times 10^{12} \text{ FLOPS}$

Frontera

- Most powerful computer I have accessed
- 470k cores
- 2.35 x 10¹⁶ FLOPS

Image courtesy Frontera, Texas Advanced Computing Center

Most powerful computer in the world as of June 2022

- 8.7 million cores
- 1.7 x 10¹⁸ FLOPS

Image courtesy Frontier, Oak Ridge National Lab

Frontier

High performance computing

- Computing beyond what personal devices can do
 - Many cores
 work together
 in parallel

FLOPS	Example	Computing 7
100	Addition by human with pen & paper	Early
105	Room-sized computer in 1940s	
106	Personal computers around year 1984	Personal
109	Personal computers around year 2000	
1011	High-end PC/smartphone today	
1012	Small supercomputer today	High-Perform
1016	Most powerful computer I ever used	
1018	Most powerful computer in the world	

уре
ance

 Today's most powerful computers are times more powerful than today's high-end personal computers.

Images courtesy wikipedia, NASA

In 1 second, the most powerful computer in the world can perform as many calculations
 as _____humans?

For comparison:

Humans alive in 2024: 8.2 x 10⁹ Total humans who ever lived: 10¹¹ Sources: google.com, pro.org

can perform as many calculations as humans?

For comparison:

Humans alive in 2018: 7.6 x 10⁹ Total humans who ever lived: 10¹¹ Sources: google.com, pro.org

• In 1 second, a small supercomputer like Ocean

High-performance computing in everyday life

- Cloud computing
 - Search the web
 - Identify a song
 - Get directions
 - Voice assistants
 - Speech recognition
 - Cloud Al servers (ChatGPT & friends)

Google Search

I'm Feeling Lucky

Example: Google search

- Search ~ 10¹³ web pages
- 10³ "servers" per query
- Each query takes about
 0.2 seconds
- 1x 10⁵ queries on average every second of every day
 - All google servers: ~10¹⁷ flops in 2008

Images courtesy Google, internetlivestats.com 1,600,000,000,000

1,200,000,000,000

800,000,000,000

400,000,000,000

Year

Example: Shazam

- 200 queries on average every second of every day
 - Convert sound into timefrequency plots, filter to keep only the loudest notes
 - Compare to a large library
 - Similar to how LIFO searches data for gravitational waves!
 - One query is a PC-sized calculation, roughly

0.0	1.0
1.0	
0.5-	
0.0-	and the state of t
-0.5-	
-1.0	
1.0	
0.5-	
0.0-	Aller den statisticken ander sone ander
-0.5-	
-1.0_	

		_	10
IN REC.	THE PARTY		
	Sugar I		

Amazon web services data center Courtesy <u>amazon.com</u>

Microsoft Azure data center (courtesy <u>sensorslab.co</u>)

Provide many 10¹⁵ FLOPS of performance to customers

Image courtesy cnet: Google data center, Council Bluffs, Iowa Google: 60,000 searches/second

High-performance computing for science

- Solve otherwise unsolvable problems
- Insight into scientific data & results
 - Experimental measurements
 - Results of calculations
 - Complicated pencil & paper results

Time: 0.0M

Movie & calculation by undergraduate Alex Carpenter Simulating eXtreme Spacetimes collaboration

Programming with Python

Programming is like magic

- Say the right cryptic words and something cool happens
- Mess up a word and the spell fizzles

Images courtesy Warner Bros.

Cocalc

- <u>https://cocalc.com</u>
- Limited paid service
 - This course: ~\$20/month paid plan (I paid, don't worry!)

Image courtesy amazon, Tech Vision

- Open https://cocalc.com and sign in
- See slack chat for the "token": enter it in the "token" box and press enter

https://cocalc.com/app?project-invite=a8VwaQcqDPAMekcc

- Click "Day1.ipynb"
- Scroll to your name, and click in the box saying "# Insert code here" labeled below your name
 - Enter this code: VBBNN1tpwckqE5mw

		Featur	es	Softwa	re P	ricing	Policies	Share	ed Files	Do	c	Si
Collab	Collaborative Calculation and Data Science		LaTeX	Linux	Octave	Python	R Stats	Teaching	Terminal	X11	Con	npar
		oupy to.	Lator		oonare	- i yilloli		louoning				ipui
Projects	r∲ GWPAC X								(j)	CoCalc	; (-	He
	🖉 Projects			🗆 Del	eted	🗌 Hidden			>	Project	t invit	e tol
(Search for projects		\otimes									
		\oplus (⊕ Create New Project						All your upgrades are ap			

р	G	Account
en		0

plied to projects.

- Your program needs to tell you the result
- Tradition since 1974: first program prints "Hello world"
- Python (language commonly) used in scientific computing) makes this easy

Iry:

Try:

print("Hello, world!")

 Print basically anything print(4*4+4-4)

Output

Brian Kernighan (early UNIX developer), 1978

Libraries

- Don't reinvent the wheel when you want to hit the road
 - (But OK if you want to learn how to make wheels)
- Python has *many* libraries for numerical computing & everything else
- By "Libraries", I mean any pre-written code that you can use in your programs

Try in tutor:

import math
print(math.pi)

- Exponents with **
- Scientific notation
- The rest in the math library

Nath Try in tutor (only type the left hand side of the ==):

• Arithmetic operations built in (4 + 4) + 4 - 4

4 ** 4 == 256

4e4 == 40000

 $math_sin(4)$ math_sqrt(4)

Expressions

- Value = piece of data of a particular type
- Type = kind of data
- Operator = combine values to get a new value
 - Behavior depends on type
- Expression = group of values and operators
- Python evaluates expressions, like a calculator

4.0 * 3.0 - 2.0 "Hello" + " world"

What does Python get when it evaluates this expression?

4.0 * 3.0 - 2.0

4.0

10.0

Some other number

An error

Try out some expressions

4.0 * 3.0 - 2.0

"Hello" + " world"

Try out some expressions

print(4.0 * 3.0 - 2.0)

print("Hello" + " world")

#make up your own

Some types we will need

- Float
- Int
- String
- Boolean

ype: float

- Operators: + * / *
- **Try in tutor:** print(22.0 / 7.0) print(-3.0e-3 * 10.0) print(1.0/3.0)

• Values: real numbers ("numbers with decimal points")

• If you don't include a decimal point, it is an integer!

print(8.0**2.0)

print(type(4)) print(type(4.0))

- Values: integers (whole numbers, positive, negative, zero)
 - - Don't use commas when typing an int or float
- Operators: + * ** / // %
- Try in tutor: print(2**8)

Iype: int

• Examples -4 742352046 7 -33

- print(7 / 3) #float in Python3, #int in Python2 (avoid!)
- print(7 // 3) # quotient print(4 * 3 - 2) print(7 % 3) # remainder

In Python 3, what is the value of this expression? 10 // 3 + 1

4

4.3333333333

Some other number

An error

• Values: true or false

Examples True

and • Operators: or

- a and b is true if both are true, false otherwise
- a or b
 - is true if a is true, b is true, or both are true is false if both a and b are false
- not a is true if a is false, false if a is true

Type: boolean

False

not

• = stores results in a named object ("variable")

• == tests whether two objects are equal

myNumber = 4print(myNumber * myNumber)

print(myNumber * myNumber == 16) True

print(2 + 2 == 5)False

Try some of these

- = stores results in a named object ("variable")
- == tests whether two objects are equal
- print(2 + 2) == 4 and 3 + 3 == 6)print(2 + 2) == 4 and 3 + 3 == 7) print(2 + 2) == 4 or 3 + 3 == 7)print(not 3 + 3 == 7)

a = Trueb = Truec = Falsed = False

Pick a few of these print(a) print(not c) print(not a) print(a or b) print(a or c) print(c or d) print(a and b) print(a and c) print(c and d)

Converting types Try in tutor:

q = 4print("The number is "+q)

q = 4print("The number is "+str(q))

print(type(4)) print(type(str(4))) print(type(float(4)))

• What does this line print?

import math print("The value of pi is "+math.pi)

The value of pi is 3.141592653589793

The value of pi is math.pi

Something else but not an error

An error

• What does this line print?

import math print("The value of pi is "+str(math.pi))

The value of pi is 3.141592653589793

The value of pi is math.pi

Something else but not an error

An error

Comments

- Comments explain what you're doing
- Use comments to explain your code
- Use names that help explain, even without comments

Say hello to someone by name personName = "Geoffrey" print("Hello " + personName)

- If does the first indented thing if the stuff in () is True
- Otherwise it does the indented stuff under "else"

Store 4 in an object called x

If/else X = 4Try in tutor! if(x < 10):print("Smaller") else: print("Bigger") print("Either way.")

• What does this program print?

x = 4
if x==10 or x==11:
 print('yes')
else:
 print('no')

Yes

The code gives an error

• What does this program print?

x = 4
if x==10 or 11:
 print('yes')
else:
 print('no')

Yes

The code gives an error

• What does this program print?

x = 4
if x==10 or 11:
 print('yes')
else:
 print('no')

x = 4
if false or true:
 print('yes')
else:
 print('no')

Yes

The code gives an error

Try in tutor! i = 0 while i < 4: print(i*i) i = i + 1print("End loop")

Print i*i

0 4 9

Store 0 in an object called i

LOODS

So far, our programs just run & stop... How do programs with a user interface work?

LOODS = 0while i < 4: print(i*i) = i + 1

What does this program print?

= 1 while j < 3:</pre> j = j + 1print(j)

- 2 3
 - 4

• What does this program print?

```
product = 1
j = 1
while j < 3:
    product = product * j
    j = j + 1
print(product)</pre>
```


• What does this program print?

• What value of x makes the program print 24?

product = 1= 1 while j < x: product = product * j j = j + 1print(product)

Real life: event loop

• Event = key press, mouse/trackpad click,

LOODS

while message != quit: message = get_next_message() process_message(message)

É	Keynote	File	Edit	Insert	Slide	Format	Arrange	View		
	• //	000				Font				
· ·	Q		~ (€		Text				
Pa	000	T				Table				
				Lic	enses	Chart				
	_	Oth a				Shapes and Lines				
10				Otr	ier Con	Movie				
203 02				Oth	ner Proc					
00						Copy S	Style			

• Basic, 1987

Python equivalent

Ny first program

PRINT "GEOFFREY" 10 20 GOTO 10

done = False while not done: print("Geoffrey")

while true: print("Geoffrey")

<u>https://geoffrey-lovelace.com/Workshop/2024</u>

- Cheat sheets for python & unix
- Links to places where you can run python notebooks for free
- Slides from the workshop

Course web page
- Area of circle?
- Area of square?
- Idea: throw darts in square
 - (circle area) ÷ (square area) \approx darts in circle \div darts in square = "hits" / ("hits" + "misses")

A silly way to compute π

• Throw darts in square

• (circle area) ÷ (square area) \approx darts in circle ÷ darts in square = $\pi/4$

A silly way to compute π

Courtesy wikipedia

Monte Carlo methods

- This idea might seem silly, but it actually has a lot of uses in physics
- Monte Carlo methods: use repeated random numbers to get results
 - Min/max of functions especially functions of many variables
 - Integrals
 especially high dimensional
 - Explore probability distributions

Images courtesy Wikipedia, Apple Maps

Monte Carlo methods

- This idea might seem silly, but it actually has a lot of uses in physics
- When we observe a gravitational wave from merging black holes...
 - What kinds of black holes made the waves?
 - Choose random parameters (masses, spins,
 - Compute the corresponding grav. wave
 - More likely to call the wave a "hit" the better it matches—vs. the last wave "hit"

GW150914: Abbott+ (2016)

• Write a program that prints one random number between 0 and 1

import math import random print(random.random())

Pi Dartboard 2 Solution

- Challenge: Modify your program
 - Store the random number in a variable x
 - Store a second random number in a variable y
 - Print x and y

import math import random

print(y)

()

x = random.random() = random.random() print(x)

- Challenge: Modify your program Print x² + y² instead of just
 - x and y

O

import math import random

x = random.random() y = random.random()

print(x) print(y)

- Challenge: Modify your program
 - Compute $x^2 + y^2$ and store it in a variable rSquared
 - Print rSquared instead of just x and y

import math import random

x = random.random() y = random.random()

()

print(x) print(y)

Pi Dartboard 3 Solution

- Challenge: Modify your program
 - Compute $x^2 + y^2$ and store it in a variable rSquared
 - Print rSquared instead of just x and y

import math import random

x = random.random() y = random.random()

()

 $rSquared = x^{**2} + y^{**2}$ print(rSquared)

Clicker question #2.5

• Which could be a number the program prints?

import math import random x = random.random() y = random.random() rSquared = x**2 + y**2 print(rSquared)

0

Clicker question #2.5 • If the dart is inside the circle,

which could be the number printed by the program?

import math import random x = random.random() random.random() $rSquared = x^{**2} + y^{**2}$ print(rSquared)

0.99

1.01

More than one of ABC

- Challenge: Modify your program
 - Just below import random, make a new variable called "hits", set to 0
 - If rSquared < 1, add 1 to hits
 - Print hits instead of rSquared

import math import random

x = random.random() y = random.random()

()

 $rSquared = x^{**2} + y^{**2}$ print(rSquared)

Pi Dartboard 4 Solution

- Challenge: Modify your program
 - Just below import random, make a new variable called "hits", set to 0
 - If rSquared < 1, add 1 to hits
 - Print hits instead of rSquared

import math import random hits = 0x = random.random() y = random.random() $rSquared = x^{**2} + y^{**2}$ if rSquared < 1:</pre> hits = hits + 1print(hits)

- Challenge: Modify your program
 - Add a new variable, just below hits, called throws. Set it equal to 10.
 - Put the code that throws the dart and sees if it hit inside a while loop, so that you throw 10 darts instead of 1 dart
 - Don't forget to increment your while loop counter variable (i or j or whatever)

- import math import random
- hits = 0
- x = random.random()

()

- y = random.random()
- $rSquared = x^{**2} + y^{**2}$ if rSquared < 1: hits = hits + 1print(hits)

Pi Dartboard 5 Solution

- Challenge: Modify your program
 - Add a new variable, just below hits, called throws. Set it equal to 10.
 - Put the code that throws the dart and sees if it hit inside a while loop, so that you throw 10 darts instead of 1 dart

= 0

- import math import random
- hits = 0throws = 10
- while i < throws:</pre>
 - x = random.random() = random.random()

()

 $rSquared = x^{**2} + y^{**2}$ if rSquared < 1: hits = hits + 1i = i + 1print(hits)

Throw darts in square

• (circle area) ÷ (square area) \approx hits \div throws = $\pi/4$

• So $\pi \approx 4 *$ (hits \div throws)

A silly way to compute π

Courtesy wikipedia

 Finish the dartboard

- Compute pi as 4.0 * float(hits) / float(throws)
- Print your pi estimate

hits = 0throws = 10= 0

- import math
- import random
- while i < throws:</pre>
 - x = random.random()

()

- y = random.random()
- $rSquared = x^{**2} + y^{**2}$ if rSquared < 1:</pre> hits = hits + 1i = i + 1
- print(hits)

Pi Dartboard 6 Solution

- Finish the dartboard
 - Compute pi as 4.0 * float(hits) / float(throws)
 - Print your pi estimate

- import random hits = 0 throws = 10
- i = 0

 - $rSquared = x^{**2} + y^{**2}$ if rSquared < 1: hits = hits + 1
- pi = 4.0 * float(hits) / float(throws) print(pi)

O

import math

while i < throws:</pre> x = random.random() = random.random()

See what happens as you make throws 10**n, n=1,2,3,4,5,6,7

- For n=7, how does speed compare if you do rSquared = x*x +y*y
- Pi Dartboard 7 import math import random hits = 0 throws = 10i = 0Owhile i < throws:</pre> x = random.random() = random.random() $rSquared = x^{**2} + y^{**2}$ if rSquared < 1: hits = hits + 1

pi = 4.0 * float(hits) / float(throws) print(pi)

