2019 Workshop on Gravitational Waves and High-Performance Computing Geoffrey Lovelace

Geoffrey Lovelace August 19, 2019 – August 23, 2019 Day 2

Clicker question #2.3

What does this program print?

= 1 while j < 3:</pre> j = j + 1print(j)

2 3

4

Clicker question #2.4

• What does this program print?

```
product = 1
j = 1
while j < 3:
    product = product * j
    j = j + 1
print(product)</pre>
```


Clicker question #2.4b

What does this program print?

Clicker question #2.4c

• What value of x makes the program print 24?

product = 1= 1 while j < x: product = product * j j = j + 1print(product)

• Throw darts in square

• (circle area) ÷ (square area) \approx darts in circle \div darts in square = $\pi/4$

A silly way to compute π

Courtesy wikipedia

Monte Carlo methods

- This idea might seem silly, but it actually has a lot of uses in physics
- Monte Carlo methods: use repeated random numbers to get results
 - Min/max of functions especially functions of many variables
 - Integrals
 especially high dimensional
 - Explore probability distributions

Images courtesy Wikipedia, Apple Maps

Monte Carlo methods

- This idea might seem silly, but it actually has a lot of uses in physics
- When we observe a gravitational wave from merging black holes...
 - What kinds of black holes made the waves?
 - Choose random parameters (masses, spins,
 - Compute the corresponding grav. wave
 - More likely to call the wave a "hit" the better it matches—vs. the last wave "hit"

GW150914: Abbott+ (2016)

Pi Dartboard 1

• Write a program that prints one random number between 0 and 1

import math import random print(random.random())

Pi Dartboard 2

- Challenge: Modify your program
 - Store the random number in a variable x
 - Store a second random number in a variable y
 - Print x and y

import math import random print(random.random())

Pi Dartboard 2 Solution

- Challenge: Modify your program
 - Store the random number in a variable x
 - Store a second random number in a variable y
 - Print x and y

import math import random

()

x = random.random() = random.random() print(x) print(y)

Pi Dartboard 3

- Challenge: Modify your program
 - Compute $x^2 + y^2$ and store it in a variable rSquared
 - Print rSquared instead of just x and y

import math import random

x = random.random() y = random.random()

()

print(x) print(y)

Pi Dartboard 3 Solution

- Challenge: Modify your program
 - Compute $x^2 + y^2$ and store it in a variable rSquared
 - Print rSquared instead of just x and y

import math import random

x = random.random() random.random() V =

()

 $rSquared = x^{**2} + y^{**2}$ print(rSquared)

Clicker question #2.5

• Which could be a number the program prints?

0

Clicker question #2.5 If the dart is inside the circle,

 If the dart is inside the which could be the number printed by the program?

import math import random x = random.random() y = random.random() rSquared = x**2 + y**2 print(rSquared)

More than one of ABC

O

Pi Dartboard 4

- Challenge: Modify your program
 - Just below import random, make a new variable called "hits", set to 0
 - If rSquared < 1, add 1 to hits
 - Print hits instead of rSquared

import math import random

x = random.random() y = random.random()

()

 $rSquared = x^{**2} + y^{**2}$ print(rSquared)

Pi Dartboard 4 Solution

- Challenge: Modify your program
 - Just below import random, make a new variable called "hits", set to 0
 - If rSquared < 1, add 1 to hits
 - Print hits instead of rSquared

import math import random hits = 0 x = random.random() y = random.random() $rSquared = x^{**2} + y^{**2}$ if rSquared < 1:</pre> hits = hits + 1print(hits)

Pi Dartboard 4.5

• Challenge: Modify your program

- Add a new variable, just below hits, called throws. Set it equal to 10.
- Add a while loop just below your new variable, throws.
 - Make a counter variable (i or j or ...) and set it equal to zero. Then make a while loop.
 While your counter variable is less than throws, each time through the while loop, add 1 to your counter variable.

- import math
 import random
- hits = 0

x = random.random()
y = random.random()

()

rSquared = x**2 + y**2
if rSquared < 1:
 hits = hits + 1
print(hits)</pre>

Pi Dartboard 4.5 solution

• Challenge: Modify your program

- Add a new variable, just below hits, called throws. Set it equal to 10.
- Add a while loop just below your new variable, throws.
 - Make a counter variable (i or j or ...) and set it equal to zero. Then make a while loop.
 While your counter variable is less than throws, each time through the while loop, add 1 to your counter variable.

import math
import random

hits = 0throws = 10

i = 0
while i < throws:
 i = i + 1</pre>

x = random.random()
y = random.random()

()

rSquared = x**2 + y**2
if rSquared < 1:
 hits = hits + 1
print(hits)</pre>

Pi Dartboard 5

- Challenge: Modify your program
 - Put the code that throws the dart and sees if it hit inside a while loop, so that you throw 10 darts instead of 1 dart
 - Your print statement should still be outside the while loop

import math import random

hits = 0throws = 10

i = 0while i < throws:</pre> i = i + 1

x = random.random() = random.random()

rSquared = x**2 + y**2if rSquared < 1:</pre> hits = hits + 1print(hits)

Pi Dartboard 5 Solution

- Challenge: Modify your program
 - Add a new variable, just below hits, called throws. Set it equal to 10.
 - Put the code that throws the dart and sees if it hit inside a while loop, so that you throw 10 darts instead of 1 dart

= 0

- import math import random
- hits = 0throws = 10
- while i < throws:</pre>
 - x = random.random()

()

- = random.random()
- $rSquared = x^{**2} + y^{**2}$ if rSquared < 1: hits = hits + 1i = i + 1print(hits)

• Throw darts in square

• (circle area) ÷ (square area) \approx hits \div throws = $\pi/4$

• So $\pi \approx 4^*$ (hits \div throws)

A silly way to compute π

Courtesy wikipedia

Pi Dartboard 6

- Finish the dartboard
 - Make a variable pi, set to 4.0 * float(hits) / float(throws)
 - Should you do this inside or outside the while loop?
 - Print pi

- import math
- import random
- hits = 0

= 0

- throws = 10
- while i < throws:</pre>
 - x = random.random()

()

- y = random.random()
- rSquared = x**2 + y**2
 if rSquared < 1:
 hits = hits + 1
 i = i + 1</pre>
- print(hits)

Pi Dartboard 6 Solution

- Finish the dartboard
 - Compute pi as 4.0 * float(hits) / float(throws)
 - Print your pi estimate

- import math import random
- hits = 0 throws = 10
- = 0

 - $rSquared = x^{**2} + y^{**2}$ if rSquared < 1: hits = hits + 1
- pi = 4.0 * float(hits) / float(throws) print(pi)

O

while i < throws:</pre> x = random.random() = random.random()

- The tutor won't let us run lots of darts
- So paste this into a cell in Jupyter on colab.google.com and run it
 - See what happens as you make throws 10**n, n=1,2,3,4,5,6,7

Pi Dartboard 7 import math import random

- throws = 10
- while i < throws:</pre> x = random.random() = random.random()
 - $rSquared = x^{**2} + y^{**2}$ if rSquared < 1: hits = hits + 1

pi = 4.0 * float(hits) / float(throws)

()

<u>https://mybinder.org/v2/gh/geoffrey444/</u> <u>NRDataExample/master</u>

Plotting your results

Scatter plots Lists and numpy arrays Pyplot plotting

Scatter plots

- Data: result or output given some input
- Example: dropped marker height vs. time
- Tools to make scatter plots
 - Excel
 - Python
 - Lists of numbers
 - Computations on lists of numbers: numpy arrays
 - pyplot: makes scatter plots

•	🔵 🔵 🕴 Aut	oSave OFF	D	ୟ =						Book1		
	Home Inse	ert Page Layout	Formul	as Data	a Revie	ew Vie	ew					
	Cut	Calibri (Body) 🔻 12	• A• A•			20 ×	📑 🥥 Wrap Text		General		
F	Paste	at B I <u>U</u> T		🗞 🔹 🗛	• =	≡≡	◆ ≡ ◆ ≡	↔ Merge & Center 🔹		\$ -	\$ • %)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$												
	Α	В	С	D	E	F	G	Н	1	J	К	
1	Time (s)	Height (m)		25								
2	0	2		2.5								
3	0.05	1.98775										
4	0.1	1.951		2	• • •							
5	0.15	1.88975				••	•					
6	0.2	1.804		(s)			•					
7	0.25	1.69375		9 1.5			•					
8	0.3	1.559		Ŭ.								
9	0.35	1.39975		, jnt					-			
10	0.4	1.216							•			
11	0.45	1.00775	-	-					۲			
12	0.5	0.775		0.5					•			
13	0.55	0.51775										
14	0.6	0.236										
15	0.61	0.17671		0								
16	0.62	0.11644			0	0	.2	0.4		0.6		
17	0.63	0.05519					Tin	ne (sec	conds)			
18												

 Values - ordered sets of objects, all the same type (like floats or ints)

• Operators -[], .append()

 Easily add on elements in loops with .append()

SIS

x = [-2.0, -1.0, 0.0, 1.0, 2.0]y = ["Hello", "world"] z = [1, 4, 9, 16]

z.append(25) == [1, 4, 9, 16, 25]

Loop over ists

for i in [1,2,3,4]: print(i*i)

0 1 4

9

import numpy as np print(np.arange(1,5,1)) [1, 2, 3, 4]

import numpy as np myCountArray = np.arange(1,5) myList = [] for i in myCountArray: myList.append(i*i) print(myCountArray) print(myList) [1, 2, 3, 4][1, 4, 9, 16]

Clicker question #2.6

• What value does the program print?

x = [1.0, 4.0, 9.0]print(x[1])

• Values - ordered sets of objects, all the same type (like floats or ints)

• Operators - [], +, -, *, /, np.sqrt(), np.sin(), np.cos(),

 Easily do math on whole lists at once (like formulas in Excel)

 $\times [0] == -2.0$ x[1] == -1.0x[4] == 2.0y[0] == "Hello"y[-1] == "world"z[-1] == 16z[0] == 1

Numpy arrays

x = np.array([-2.0, -1.0, 0.0, 1.0, 2.0])y = np.array(["Hello", "world"]) q = np.array([1, 2, 3, 4])r = q * 2

s = q + rz = q * q

> r == np.array([2, 4, 6, 8]) s == np.array([3, 6, 9, 12]) z == np.array([1, 4, 9, 16])

Naking sample data

- Annoying to type [1,2,3,4,...] all the time
- Instead: np.arange(start, stop, step)
- What do all these numbers mean??
 - Make a plot to visualize them

Try in colab!

import numpy as np x = np.arange(-4.0, 4.0, 0.01)y = np.sin(x) **3print(x) print(y)

-9.99825171e-01-9.99351433e-01-9.98578166e-01-9.97505912e-01
-9.96135421e-01-9.94467651e-01-9.92503769e-01-9.90245148e-01
-9.87693366e-01-9.84850205e-01-9.81717651e-01-9.78297888e-01
-9.74593301e-01-9.70606471e-01-9.66340175e-01-9.61797379e-01
-9.56981241e-01-9.51895105e-01-9.46542499e-01-9.40927131e-01
-9.35052889e-01-9.28923832e-01-9.22544191e-01-9.15918365e-01
-9.09050915e-01 -9.01946561e-01 -8.94610179e-01 -8.87046794e-01
-8.79261581e-01 -8.71259853e-01 -8.63047062e-01 -8.54628794e-01
-8.46010761e-01-8.37198799e-01-8.28198860e-01-8.19017011e-01
-8.09659425e-01-8.00132377e-01-7.90442239e-01-7.80595473e-01
-7.70598629e-01 -7.60458333e-01 -7.50181290e-01 -7.39774268e-01
-7.29244102e-01 -7.18597680e-01 -7.07841944e-01 -6.96983877e-01
-6.86030504e-01-6.74988880e-01-6.63866088e-01-6.52669231e-01
-6.41405427e-01-6.30081800e-01-6.18705479e-01-6.07283586e-01
-5.95823237e-01-5.84331527e-01-5.72815532e-01-5.61282298e-01
-5.49738839e-01-5.38192126e-01-5.26649084e-01-5.15116589e-01
-5.03601455e-01-4.92110435e-01-4.80650212e-01-4.69227393e-01
-4.57848505e-01-4.46519990e-01-4.35248195e-01-4.24039375e-01
-4.12899678e-01-4.01835147e-01-3.90851715e-01-3.79955193e-01
-3.69151273e-01 -3.58445520e-01 -3.47843366e-01 -3.37350109e-01
-3.26970907e-01-3.16710771e-01-3.06574566e-01-2.96567003e-01
-2.86692639e-01 -2.76955868e-01 -2.67360924e-01 -2.57911871e-01

Plotting sample data Try in colab!

Make plots with pyplot

import numpy as np import matplotlib from matplotlib import pyplot as plt matplotlib.rc('axes', labelsize=18) matplotlib.rc('xtick', labelsize = 18) matplotlib.rc('ytick', labelsize = 18)

x = np.arange(-4.0, 4.0, 0.01)
y = np.sin(x)**3

plt.clf() #clear figure
plt.plot(x,y, color='b')
plt.xlabel('x')
plt.ylabel('sin^3(x)')
plt.show()

Х

Functions

- Input(s) ("arguments")
- Returns output
- Functions can call other functions

Try in tutor! def square(x): return x*x square(4) 16

• Activity: edit your code

- Make everything but the first two lines and last two lines inside a function that takes one input, throws
- Instead of setting throws = 10, throws in an input to the function
- Return the pi estimate
- Have your print statement just use your function

import math import random

- while i < throws:</pre>
 - x = random.random()
 - = random.random()
 - $rSquared = x^{**2} + y^{**2}$ if rSquared < 1:</pre> hits = hits + 1= i + 1

= 4.0 * float(hits) / float(throws)

Solution

• Activity: edit your code

- Make everything but the last two lines inside a function that takes one input, n
- Instead of setting throws = 10, set throws=n
- Return the pi estimate

import math import random

i = 0

pi = 4.0 * float(hits) / float(throws) return pi

```
def estimatePi(throws):
  hits = 0
  while i < throws:</pre>
      x = random.random()
      y = random.random()
```

 $rSquared = x^{**2} + y^{**2}$ if rSquared < 1:</pre> hits = hits + 1i = i + 1

print(estimatePi(le4))

Potting m 2

Activity: edit your code

- Make a list of different numbers of throws: 10, 100, 1000, ... up to 1e7
- Make an empty list called piEstimates
- Loop over the list you made, estimating π for different numbers of throws

import math import random

return pi

print(estimatePi(1e4))

def estimatePi(throws): # (same definition of estimatePi function here)

Plotting π solution 2

Activity: edit your code

- Make a list of different numbers of throws: 10, 100, 1000, ... up to 1e7
- Make an empty list called piEstimates
- Loop over the list you made, estimating π for different numbers of throws

import math import random

def estimatePi(throws): # (same definition of estimatePi function here) return pi

throwsList = [1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7] piEstimatesList = [] for throws in throwsList: piEstimatesList.append(estimatePi(throws)) print(piEstimatesList)

Potting m 3

- Activity: edit your code
 - Don't print piEstimatesList
 - Instead, make a scatter plot of throwsList vs. piEstimatesList
 - Use a log scale on the x axis: plt.xscale('log')

import math import random

def estimatePi(throws): # (same definition of estimatePi function here) return pi

throwsList = [1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7] piEstimatesList = [] for throws in throwsList: piEstimatesList.append(estimatePi(throws)) print(piEstimatesList)

Solution 3

- Activity: edit your code
 - Don't print piEstimatesList
 - Instead, make a scatter plot of throwsList vs. piEstimatesList
 - Use a log scale on the x axis: plt.xscale('log')

import math import random import matplotlib

def estimatePi(throws): # (same definition of estimatePi function here) return pi

plt.clf() plt.show()

```
import numpy as np
from matplotlib import pyplot as plt
matplotlib.rc('axes', labelsize=18)
matplotlib.rc('xtick', labelsize = 18)
matplotlib.rc('ytick', labelsize = 18)
```

```
throwsList = [1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7]
piEstimatesList = []
for throws in throwsList:
    piEstimatesList.append(estimatePi(throws))
```

```
plt.plot(throwsList, piEstimatesList)
plt.xlabel('Number of throws')
plt.xscale('log')
plt.ylabel('Estimate of pi')
```


Accuracy of the π dart board

- As throws goes up, answer gets closer to pi
- But it's hard to see how close it is later on
- So instead, plot the difference between the estimate and the real answer

Estimate of pi 3.2

3.6

Potting π4

- Challenge: edit your code
 - import numpy as np
 - piEstimates = np.array(piEstimatesList)
 - Plot throwsList vs. abs(piEstimates - math.pi)
 - Put y axis on a log scale
 - Update y axis label to be abs(estimate of pi - pi)

plt.clf() plt.show()

... code that computes pi

```
throwsList = [1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7]
piEstimatesList = []
for throws in throwsList:
    piEstimatesList.append(estimatePi(throws))
plt.plot(throwsList, piEstimatesList)
plt.xlabel('Number of throws')
plt.xscale('log')
plt.ylabel('Estimate of pi')
```


Solution 4

- Challenge: edit your code
 - import numpy as np
 - piEstimates = np.array(piEstimatesList)
 - Plot throwsList vs. abs(piEstimates - math.pi)
 - Put y axis on a log scale
 - Update y axis label to be abs(estimate of pi - pi)

plt.clf() plt.xscale('log') plt.yscale('log') plt.show()

... code that computes pi

```
throwsList = [1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7]
piEstimatesList = []
```

- **for** throws **in** throwsList:
 - piEstimatesList.append(estimatePi(throws))

```
piEstimates = np.array(piEstimatesList)
plt.plot(throwsList, abs(piEstimates - math.pi))
plt.xlabel('Number of throws')
plt.ylabel('abs(Estimate of pi - pi)')
```

pi - pi)	10 ⁻¹	
s(Estimate of	10 ⁻²	
	10 ⁻³	
ab	10 ⁻⁴	
		102

Concepts in numerical programming

Resolution

Accuracy

Precision

Resolution

Low resolution Entire image: 227KB

Large galaxies 1 *billion light years away*

Small galaxies up to 13 billion light years away

Image courtesy NASA

High resolution Entire image: 110MB

Large galaxies 1 *billion light years away*

Small galaxies up to 13 billion light years away

Image courtesy NASA

Resolution

Resolution

Low resolution

- Smaller data
- Faster computation
- Less precise
- High resolution
 - Bigger data
 - Slower computation
 - More precise

Precision

- How much result changes when you add more resolution
- "How many digits"

Accuracy

 How close result is to the correct result

Example: thermal noise

 Thermal noise of a mirror in LIGO depends on how much potential energy it gets when you push on the face

Color = how much mirror deforms

Lovelace, Demos, Khan (2018)

Example: thermal noise

- Potential energy *E* in deformed mirror
 - Precision of energy as resolution increases
 - Label resolution by integer N

AlGaAs (effective isotropic)

Higher resolution

Lovelace, Demos, Khan (2018)

Example: thermal noise

- Thermal noise of thin coating
 - Accuracy: compare code to known "analytic" solution

Lovelace, Demos, Khan (2018)

Unix terminal on the web

NRDataExample/master

Choose "New Terminal"

Go to <u>https://mybinder.org/v2/gh/geoffrey4444/</u>

of throws. The horizontal axis shows

Your graph plots abs(estimate of pi - pi) vs number

of throws. The vertical axis shows

Your graph plots abs(estimate of pi - pi) vs number

• As the number of throws increases, the resolution

• As the number of throws increases, the accuracy

Example: π dart board

- Need roughly 100x
 more darts to get 10x
 more accuracy
 - That is, 100x darts gives you 10x more accuracy
 - This gets slow fast!
 - Can we do better?

pi - pi)	10 ⁻¹	
late of	10 ⁻²	
s(Estim	10 ⁻³	
ab	10 ⁻⁴	

Connect to ocean (use our laptops)

- Open "PuTTY 64-bit" on the desktop
- Under "saved sessions" select "ocean"
- Click "Open"
- Username: workshopStudents2019
- Passphrase
 - Some computers: workshop2019!!
- squeue
- /bin/bash

• srun -p orca-1 --nodes=1 --tasks-per-node=20 --pty

UNIX command line crash course activity

- Commands to know
 - Is, pwd, cd, mkdir
 - ./, ../, paths
 - cp, mv, rm, rmdir
 - cat, less
 - nano
 - whoami, date, ...

- Play along with me...
 - mkdir YOURNAME and cd into it
 - Navigate file system: Is, pwd, cd, ./ and ../
 - Use nano to write a text file
 - Copy, rename, remove a file
 - Cat, less, more, head, tail
 - > to redirect output
 - Grab bag: whoami, date, grep, sed, zip...

Unix commands to know

- Commands to know
 - Is, pwd, cd, mkdir
 - ./, ../, paths
 - cp, mv, rm, rmdir
 - cat, less
 - nano
 - whoami, date, ...

- Play along with me...
 - mkdir YOURNAME and cd into it
 - Navigate file system: Is, pwd, cd, ./ and ../
 - Use nano to write a text file
 - Copy, rename, remove a file
 - Cat, less, more, head, tail
 - > to redirect output
 - Grab bag: whoami, date, grep, sed, man,

command would I use?

S

CC

• I want to list the files in the directory I'm in. Which

pwd

nano

• Which command edits the file "Hello.txt" in the directory I am currently in?

nano ./Hello.txt

cat ./Hello.txt

nano ../Hello.txt

cat ../Hello.txt

 Which command makes a new directory called "TestFolder"?

Is TestFolder

cd TestFolder

mkdir TestFolder

cp TestFolder

- directory, which is not empty?
 - rmdir ./
 - rm -r ./*
 - rm -r . /*

More than one of these will work

• Which command removes everything in the current

- Commands to know
 - Is, pwd, cd, mkdir
 - ./, ../, paths
 - cp, mv, rm, rmdir
 - cat, less
 - nano
 - whoami, date, ...

Unix activity

• Use nano to write a bash script (each line is a command like you would enter on the command line)

• The script should...

- Print the current date and time
- Print the current directory
- Copy /proc/cpuinfo into the current directory
- Get the first line of the copied file, and save it to a file called FirstLineOfProc.txt
- Bonus: Use grep to only show the line with "cpu cores"
- Bonus: use sed to remove all but the core number
- Bonus: instead of copying the /proc/cpuinfo file, copy whatever file users specify as an argument (google bash arguments)

Parallel computing

- Supercomputers have lots of cores
- But each core is not much faster than a PC
- To take full advantage, you have to write code that can run on more than one core at the same time
 - That is, code that runs in parallel

Image courtesy Blue Waters

Connect to ocean

- Open "PuTTY 64-bit" on the desktop
- Under "saved sessions" select "ocean"
- Click "Open"
- Username: workshopStudents2019
- Passphrase
 - Some computers: workshop2019!!
- squeue
- /bin/bash

• srun -p orca-1 --nodes=1 --tasks-per-node=20 --pty

Parallel computing 1

- Log into ocean
- Do this

#Replace GeoffreyLovelace with YourName cd student folders mkdir YOUR NAME #replace with your lastName firstName cd YOUR NAME

mkdir PiDart cd PiDart source /opt/ohpc/pub/apps/anaconda2/bin/activate root

Parallel computing 2

•nano Hello.py

print("Hello")

•mpirun -np 8 python Hello.py

•What happens? What happens if you change 8 to another number less than 8?
What happened?

- mpirun ran many copies of "Hello.py"
- Each copy printed "Hello"
 - But the processors are not working together yet, or even doing anything different
- Next: make different processors do different things

Parallel computing 3

- cp Hello.py MpiHello.py
- •nano MpiHello.py

from mpi4py import MPI comm = MPI.COMM WORLDrank = comm.Get rank() size = comm.Get size() "+str(size))

• mpirun -np 4 python MpiHello.py

•mpirun -np 8 python MpiHello.py

print("Hello from processor "+str(rank)+" out of