2018 Workshop on Gravitational Waves and **High-Performance Computing** Geoffrey Lovelace

August 13, 2018 – August 17, 2018

Welcome to the workshop!

- Please take an ABCD card and schedule
- Please make a name tag
- Donuts today
- Water next store in MH-601
- Workshop supported by the National Science Foundation

Welcome to the workshop!

- website, in news stories about the workshop
- If you agree to have your picture taken, please check the box on the sign-in sheet

Photos

We would like to take photos during the workshop

The photos would appear on the Cal State Fullerton

Schedule overview

- Monday: Powers of 10 & computing, UNIX, thermal noise
- Tuesday: Programming with Python
- Wednesday: Black holes, gravitational waves
- Thursday: Gravitational-wave research, Data Center tour
- Friday: visualizing colliding black holes

GWT PAC GRAVITATIONAL WAVE Physics and Astronomy Center

Which brother am I?

Both

Neither

Not sure

Icebreaker

 If you had to gain one superpower, which one would you choose?

Ability to fly

Power to be invisible

- Unix, nano, batch submission
- Submit thermal noise job

Day 1

• HPC concepts, orders of magnitude, examples

Schedule today

Monday, 8/13	9:30 AM	Welcome
	9:40 AM	Powers of 10, sc
	10:20 AM	Powers of 10 &
	11:00 AM	Break
	11:20 AM	Connecting to a
	12:00 PM	Lunch
	1:30 PM	UNIX part 2, ru
	2:10 PM	Thermal noise for
	2:30 PM	Break
	2:50 PM	Computing and

- cientific notation
- computing

supercomputer, UNIX part 1

- nning jobs on a supercomputer
- or measuring mirror positions

visualizing thermal noise on a supercomputer

• The universe has many things of many different sizes

- Hard to get a sense of scale
- Solution: use powers of 10

Images courtesy wikipedia, NASA

Gold atoms (false color) 0.000000003 m diameter

Milky Way

Sagittarius Dwarf Elliptical

738,000,000,000,000,000 km

Canis Major Dwarf 397,000,000,000,000,000 km

-00,000,000,000,000 km

1.693,00

- $10^9 = 1,000,000,000$
- $10^6 = 1,000,000$
- $10^3 = 1,000$
- $10^2 = 100$
- $10^1 = 10$
- $10^{\circ} = 1$

- $10^{\circ} = 1$
- $10^{-1} = 0.1$
- $10^{-2} = 0.01$
- $10^{-3} = 0.001$
- $10^{-6} = 0.000001$
- $10^{-9} = 0.00000001$

• To the nearest power of 10, what is the diameter of the earth in meters? Hint: $1 \text{ km} = 10^3 \text{ m} = 0.6 \text{ mi}$

Image courtesy Wikipedia

years million light 100

• To the nearest power of 10, what is the diameter of the earth in meters? Hint: $1 \text{ km} = 10^3 \text{ m} = 0.6 \text{ mi}$

Image courtesy Wikipedia

this room to LAX airport in meters? *Hint:* $1 \text{ km} = 10^3 \text{ m} = 0.6 \text{ mi}$

• To the nearest power of 10, how far is it from

• To the nearest power of 10, how old are you?

10³ seconds 10⁶ seconds

10⁹ seconds

10¹² seconds

- The universe has many things of many different sizes
- So does money https://xkcd.com/980/ huge/

- $10^9 = 1,000,000,000$
- $10^6 = 1,000,000$
- $10^3 = 1,000$
- $10^2 = 100$
- $10^1 = 10$
- $10^{\circ} = 1$

- $10^{\circ} = 1$
- $10^{-1} = 0.1$
- $10^{-2} = 0.01$
- $10^{-3} = 0.001$
- $10^{-6} = 0.000001$
- $10^{-9} = 0.00000001$

Scientific notation

- $5 \times 10^{\circ} = 5$
- $4 \times 10^{1} = 40$
- $7 \times 10^2 = 700$
- $4.56 \times 10^3 = 4,560$
- $9.8 \times 10^6 = 9,800,000$
- 3.1 x $10^9 = 3,100,000,000$

- $10^{\circ} = 1$
- $4 \times 10^{-1} = 0.4$
- 7 x $10^{-2} = 0.07$
- $4.56 \times 10^{-3} = 0.00456$
- $9.8 \times 10^{-6} = 0.0000098$
- 3.1 x $10^{-9} = 0.000000031$

Scientific notation

- $5 \times 10^{\circ} = 5$
- $4 \times 10^{1} = 40$
- $7 \times 10^2 = 700$
- $4.56 \times 10^3 = 4,560$
- $9.8 \times 10^6 = 9,800,000$
- 3.1 x $10^9 = 3,100,000,000$

- $10^{\circ} = 1$
- $4 \times 10^{-1} = 0.4$
- 7 x $10^{-2} = 0.07$
- $4.56 \times 10^{-3} = 0.00456$
- $9.8 \times 10^{-6} = 0.0000098$
- 3.1 x $10^{-9} = 0.000000031$

- Compute your age in seconds in scientific notation (round to 2 digits)
- Look up any conversions you like online

Activity

Powers of 10 & computers

Humans

- First entities called "computers" were teams of people
- Divide up the work into operations done in parallel, by hand (perhaps with mechanical aid)
- Redundant calculations to check accuracy
- Since 1700s
- 10⁻¹ to 1 FLOPS / human (decimal operations / second / human)

Image courtesy wikipedia

1949 NACA High Speed Flight Station "Computer Room")

Colossus (1942)

- First programmable, digital, electronic computer
- Break codes in World War II Britain
- 5 x 10⁵ FLOPS

Image courtesy wikipedia

First Macintosh • 1 x 10⁶ FLOPS

Image courtesy wikipedia

My first Mac (1984)

My Mac in 2003

- 2 cores
- 2 x 10⁹ FLOPS

Image courtesy Apple

My current Mac

- 4 cores
- 2 x 10¹¹ FLOPS

Image courtesy Apple

My current iPhone

- 6 cores
- 8 x 10⁹ FLOPS

Image courtesy Apple

Images courtesy wikipedia, NASA

perform as many calculations as humans?

For comparison:

Humans alive in 2018: 7.6 x 10⁹ Total humans who ever lived: 10¹¹ Sources: google.com, pro.org

In 1 second, today's high-end smart phones can

 Today's most powerful computers are times more powerful than today's high-end personal computers.

Images courtesy wikipedia, NASA

Orange-county Relativity Cluster for Astronomy (ORCA)

- Supercomputer for Cal State Fullerton Gravitational-Wave Physics and Astronomy Center
- 600 cores
- 7 x 10¹² FLOPS

- Most powerful computer I have used
- 70,000 cores
- 1 x 10¹⁶ FLOPS

Bue Waters

Image courtesy Blue Waters

- Most powerful computer in the world (June 2018)
- 200,000 cores
- 2 x 10¹⁷ FLOPS
- Record with graphics cards: 2 x 10¹⁸ FLOPS

Summit

Image courtesy Oak Ridge National Laboratory

High performance computing

- Computing beyond what personal devices can do
 - Many cores
 work together
 in parallel

FLOPS	Example	Computing 7
100	Addition by human with pen & paper	Early
103	Room-sized computer in 1940s	
106	1980s personal computers (1984)	Persona
109	Personal computers around year 2000	
1 010	High-end smartphone today	
1011	High-end PC today	
10 ¹²	Small supercomputer today	High-Perform
10 16	Most powerful supercomputer I've	
1017	Most powerful supercomputers today	

ance

Clicker question #1.3

 Today's most powerful computers are times more powerful than today's high-end personal computers.

Images courtesy wikipedia, NASA

Clicker question #1.6

In 1 second, the most powerful computer in the world can perform as many calculations as _____humans?

For comparison:

Humans alive in 2018: 7.6 x 10⁹ Total humans who ever lived: 10¹¹ Sources: google.com, pro.org

Clicker question #1.7

can perform as many calculations as humans?

For comparison:

Humans alive in 2018: 7.6 x 10⁹ Total humans who ever lived: 1011 Sources: google.com, pro.org

• In 1 second, a small supercomputer like ORCA

High-performance computing in everyday life

- Cloud computing
 - Search the web
 - Identify a song
 - Get directions
 - Voice assistants
 - Speech recognition

Google Search

I'm Feeling Lucky

Example: Google search

- Search ~ 10¹³ web pages
- 10³ "servers" per query
- Each query takes about
 0.2 seconds
- 4 x 10⁴ queries on average every second of every day

1,600,000,000,000

1,200,000,000,000

800,000,000,000

400,000,000,000

 If each server is "only"10⁹ FLOPS, Google search requires about 10¹⁶ FLOPS

Images courtesy Google, internetlivestats.com

Year

Example: Shazam

- 200 queries on average every second of every day
 - Convert sound into timefrequency plots, filter to keep only the loudest notes
 - Compare to a large library
 - Similar to how LIFO searches data for gravitational waves!
 - One query is a PC-sized calculation, roughly

0.0	1.0	
1.0		
0.5-		
0.0-		neen ja keinen suur.
-0.5-		
-1.0		
1.0		
0.5-		
0.0-	Alicent Contract of Marine and Alicent Contract of Marine and Alicent Contract of Marine and Alicente Contract of Marine and A	n and a state of the
-0.5-		
-1.0_		

		_	_	10
	VIII.			
			A A A	
-			E	
			AN LA	

Amazon web services data center Courtesy <u>amazon.com</u>

Microsoft Azure data center (courtesy <u>sensorslab.co</u>)

Provide many 10¹⁵ FLOPS of performance to customers

Image courtesy cnet: Google data center, Council Bluffs, Iowa Google: 60,000 searches/second

High-performance computing for science

- Solve otherwise unsolvable problems
- Insight into scientific data & results
 - Experimental measurements
 - Results of calculations
 - Complicated pencil & paper results

Movie & calculation by undergraduate Haroon Khan, Nick Demos, Simulating eXtreme Spacetimes collaboration

Example: Simulating colliding black holes

- Head-on collision example
 - About 1.4 x 10¹⁷ floating-point operations
 - 3 days (48 cores on orca)
 - A month on a typical laptop
- Inspiral, merger, ringdown example
 - About 7.8 x 10¹⁷ floating-point operations
 - 17 days (48 cores before merger, 36 cores after, on orca)
 - Months on a typical laptop

Binary Black Hole Evolution: Caltech/Cornell Computer Simulation

Top: 3D view of Black Holes and Orbital Trajectory

Middle: Spacetime curvature: Depth: Curvature of space Colors: Rate of flow of time Arrows: Velocity of flow of space

Bottom: Waveform (red line shows current time)

Using ORCA ssh, UNIX command line, batch submission

- Interactive Python tutorial
- Basic Python examples
- Pi dartboard: 1 core
- Accuracy, precision, and speed
- Pi dartboard: multiple cores

Day 2

Schedule today

Tuesday, 8/14	9:30 AM	Learning to prog
	11:00 AM	Break
	11:20 AM	Programming th
	12:00 PM	Lunch
	1:30 PM	Learning to prog
	2:10 PM	Resolution, prec
	2:40 PM	Break
	3:00 PM	Parallelizing the

gram with Python: basics, Python tutor, Jupyter notebooks

e Pi dartboard

gram with Python: arrays, plots

cision & accuracy, timing

Pi dartboard, running the dartboard on a supercomputer

Programming is like magic

- Say the right cryptic words and something cool happens
- Mess up a word and the spell fizzles

Images courtesy Warner Bros.

Helps you visualize what the program is doing

 Simplified version that we will use: <u>http://</u> cs1110.cs.cornell.edu/visualizer/

<u>oythontutor.com</u>

Google colaboratory

- <u>https://</u> <u>colab.research.google.com</u>
- Google lets us program and run on their computers for free

Image courtesy cnet: Google data center, Council Bluffs, Iowa

- Open python tutor in a new browser tab in Chrome: http://cs1110.cs.cornell.edu/visualizer/
 - We'll use the tutor to see "inside" what the code is doing, step by step
- Open <u>colab.research.google.com</u> in another tab, and make a new Python3 notebook
 - Save the notebook on your google drive, rename to "YOURNAME_Workshop2018.ipynb"
 - Share the notebook with me (geoffrey4444@gmail.com)
 - We'll use notebook to actually run stuff "for real"
- If you get an error, let me know!

How to play along

- Your program needs to tell you the result
- Tradition since 1974: first program prints "Hello world"
- Python (language commonly) used in scientific computing) makes this easy

Iry in tutor: print("Hello, world!")

 Print basically anything Iry in tutor: print(4*4+4-4)

Output

Brian Kernighan (early UNIX developer), 1978

Libraries

- Don't reinvent the wheel when you want to hit the road
 - (But OK if you want to learn how to make wheels)
- Python has *many* libraries for numerical computing & everything else
- By "Libraries", I mean any pre-written code that you can use in your programs

Try in tutor:

import math
print(math.pi)

- Exponents with **
- Scientific notation
- The rest in the math library

Nath Try in tutor (only type) the left hand side of the ==):

• Arithmetic operations built in (4 + 4) + 4 - 4

4 ** 4 == 256

4e4 == 40000

 $math_sin(4)$ math_sqrt(4)

Expressions

- Value = piece of data of a particular type
- Type = kind of data
- Operator = combine values to get a new value
 - Behavior depends on type
- Expression = group of values and operators
- Python evaluates expressions, like a calculator

4.0 * 3.0 - 2.0 "Hello" + " world"

Clicker question #2.0

What does Python get when it evaluates this expression?

4.0 * 3.0 - 2.0

4.0

10.0

Some other number

An error

Try out some expressions in the tutor

4.0 * 3.0 - 2.0

"Hello" + " world"

Try out some expressions in the tutor

print(4.0 * 3.0 - 2.0)

print("Hello" + " world")

#make up your own

Some types we will need

- Float
- Int
- String
- Boolean

ype: float

- - Examples 4.1234
- Operators: + * /
- Try in tutor: print(22.0 / 7.0) print(-3.0e-3 * 10.0) print(1.0/3.0)

• Values: real numbers ("numbers with decimal points")

• If you don't include a decimal point, it is an integer!

print(8.0**2.0)

print(type(4)) print(type(4.0))

- - Don't use commas when typing an int or float
- Operators: + * ** / // %
- Try in tutor: print(2**8)

ype: int

- Values: integers (whole numbers, positive, negative, zero)
 - Examples -4 742352046 7 -33

- print(7 / 3) #float in Python3, #int in Python2 (avoid!)
- print(7 // 3) # quotient print(4 * 3 - 2) print(7 % 3) # remainder

Clicker question #2.1

In Python 3, what is the value of this expression? 10 // 3 + 1

4

4.3333333333

Some other number

An error

• Values: true or false

Examples True

and • Operators: or

- a and b is true if both are true, false otherwise
- a or b
 - is true if a is true, b is true, or both are true is false if both a and b are false
- not a is true if a is false, false if a is true

Type: boolean

False

not

• = stores results in a named object ("variable")

• == tests whether two objects are equal

myNumber = 4print(myNumber * myNumber)

print(myNumber * myNumber == 16) True

print(2 + 2 == 5)False

Try in the tutor

- = stores results in a named object ("variable")
- == tests whether two objects are equal
- print(2 + 2) == 4 and 3 + 3 == 6)print(2 + 2) == 4 and 3 + 3 == 7) print(2 + 2) == 4 or 3 + 3 == 7)print(not 3 + 3 == 7)

a = True b = True c = Falsed = False

Pick a few of these print(a) print(not c) print(not a) print(a or b) print(a or c) print(c or d) print(a and b) print(a and c) print(c and d)

Converting types Try in tutor:

q = 4print("The number is "+q)

q = 4print("The number is "+str(q))

print(type(4)) print(type(str(4))) print(type(float(4)))

Clicker question #2.2

• What does this line print?

import math print("The value of pi is "+math.pi)

The value of pi is 3.141592653589793

The value of pi is math.pi

Something else but not an error

An error

Clicker question #2.2

• What does this line print?

import math print("The value of pi is "+str(math.pi))

The value of pi is 3.141592653589793

The value of pi is math.pi

Something else but not an error

An error

Comments

- Comments explain what you're doing
- Use comments to explain your code
- Use names that help explain, even without comments

Say hello to someone by name personName = "Geoffrey" print("Hello " + personName)

- If does the first indented thing if the stuff in () is True
- Otherwise it does the indented stuff under "else"

Store 4 in an object called x

If/else = 4 Try in tutor! if(x < 10):print("Smaller") else: print("Bigger") print("Either way.")

Clicker question #2.2b

• What does this program print?

X = 4if x = = 10 or x = = 11: print('yes') else: print('no')

Yes No

The code gives an error

Clicker question #2.2

• What does this program print?

x = 4
if x==10 or 11:
 print('yes')
else:
 print('no')

Yes

The code gives an error

Try in tutor! i = 0 while i < 4: print(i*i) i = i + 1 print("End loop")</pre>

Store 0 in an object called i

LOODS

So far, our programs just run & stop... How do programs with a user interface work?

LOODS = 0while i < 4: print(i*i) = i + 1

Clicker question #2.3

What does this program print?

= 1 while j < 3:</pre> j = j + 1print(j)

2 3

4

Clicker question #2.4

• What does this program print?

```
product = 1
j = 1
while j < 3:
    product = product * j
    j = j + 1
print(product)</pre>
```


Clicker question #2.4b

What does this program print?

Clicker question #2.4c

• What value of x makes the program print 24?

product = 1= 1 while j < x: product = product * j j = j + 1print(product)

Real life: event loop

• Event = key press, mouse/trackpad click,

LOODS

while message != quit: message = get_next_message() process_message(message)

É	Keynote	File	Edit	Insert	Slide	Format	Arrange	View	
	• //	000				Font			
· ·	Q		~ (€		Text			
Pa	000	T				Table			
				Lic	enses	Chart			
	_			04		Snapes	s and Lines		
10				Utr	ier Con	Movie			
203 02				Oth	ner Proc				
00						Copy S	Style		

• Basic, 1987

Python equivalent

My first program

10 PRINT "GEOFFREY" 20 GOTO 10

done = False while not done: print("Geoffrey")

- Area of circle?
- Area of square?
- Idea: throw darts in square
 - (circle area) ÷ (square area) \approx darts in circle \div darts in square = "hits" / ("hits" + "misses")

A silly way to compute π

• Throw darts in square

• (circle area) ÷ (square area) \approx darts in circle \div darts in square = $\pi/4$

A silly way to compute π

Courtesy wikipedia

Monte Carlo methods

- This idea might seem silly, but it actually has a lot of uses in physics
- Monte Carlo methods: use repeated random numbers to get results
 - Min/max of functions especially functions of many variables
 - Integrals especially high dimensional
 - Explore probability distributions

Images courtesy Wikipedia, Apple Maps

Nonte Carlo methods

- This idea might seem silly, but it actually has a lot of uses in physics
- When we observe a gravitational wave from merging black holes...
 - What kinds of black holes made the waves?
 - Choose random parameters (masses, spins,
 - Compute the corresponding grav. wave
 - More likely to call the wave a "hit" the better it matches—vs. the last wave "hit"

GW150914: Abbott+ (2016)

Pi Dartboard 1

• Write a program that prints one random number between 0 and 1

import math import random print(random.random())

Pi Dartboard 2

- Challenge: Modify your program
 - Store the random number in a variable x
 - Store a second random number in a variable y
 - Print x and y

import math import random print(random.random())

Pi Dartboard 2 Solution

- Challenge: Modify your program
 - Store the random number in a variable x
 - Store a second random number in a variable y
 - Print x and y

import math import random

()

x = random.random() = random.random() print(x) print(y)

Pi Dartboard 3

 Challenge: Modify your program Print x² + y² instead of just x and y

O

import math import random

x = random.random() y = random.random()

print(x) print(y)

Pi Dartboard 3

- Challenge: Modify your program
 - Compute $x^2 + y^2$ and store it in a variable rSquared
 - Print rSquared instead of just x and y

import math import random

x = random.random() y = random.random()

()

print(x) print(y)

Pi Dartboard 3 Solution

- Challenge: Modify your program
 - Compute $x^2 + y^2$ and store it in a variable rSquared
 - Print rSquared instead of just x and y

import math import random

x = random.random() random.random() V =

()

 $rSquared = x^{**2} + y^{**2}$ print(rSquared)

Clicker question #2.5

• Which could be a number the program prints?

0

Clicker question #2.5 If the dart is inside the circle,

 If the dart is inside the which could be the number printed by the program?

import math import random x = random.random() y = random.random() rSquared = x**2 + y**2 print(rSquared)

More than one of ABC

O

Pi Dartboard 4

- Challenge: Modify your program
 - Just below import random, make a new variable called "hits", set to 0
 - If rSquared < 1, add 1 to hits
 - Print hits instead of rSquared

import math import random

x = random.random() y = random.random()

()

 $rSquared = x^{**2} + y^{**2}$ print(rSquared)

Pi Dartboard 4 Solution

- Challenge: Modify your program
 - Just below import random, make a new variable called "hits", set to 0
 - If rSquared < 1, add 1 to hits
 - Print hits instead of rSquared

import math import random hits = 0 x = random.random() y = random.random() $rSquared = x^{**2} + y^{**2}$ if rSquared < 1:</pre> hits = hits + 1print(hits)

Pi Dartboard 5

- Challenge: Modify your program
 - Add a new variable, just below hits, called throws. Set it equal to 10.
 - Put the code that throws the dart and sees if it hit inside a while loop, so that you throw 10 darts instead of 1 dart
 - Don't forget to increment your while loop counter variable (i or j or whatever)

- import math
 import random
- hits = 0
- x = random.random()
 y = random.random()

()

rSquared = x**2 + y**2
if rSquared < 1:
 hits = hits + 1
print(hits)</pre>

Pi Dartboard 5 Solution

- Challenge: Modify your program
 - Add a new variable, just below hits, called throws. Set it equal to 10.
 - Put the code that throws the dart and sees if it hit inside a while loop, so that you throw 10 darts instead of 1 dart

= 0

- import math import random
- hits = 0throws = 10
- while i < throws:</pre>
 - x = random.random()

()

- = random.random()
- $rSquared = x^{**2} + y^{**2}$ if rSquared < 1: hits = hits + 1i = i + 1print(hits)

• Throw darts in square

• (circle area) ÷ (square area) \approx hits \div throws = $\pi/4$

• So $\pi \approx 4^*$ (hits \div throws)

A silly way to compute π

Courtesy wikipedia

Pi Dartboard 6

 Finish the dartboard

- Compute pi as 4.0 * float(hits) / float(throws)
- Print your pi estimate

hits = 0 = 0

- import math
- import random
- throws = 10
- while i < throws:</pre>
 - x = random.random()

()

- y = random.random()
- $rSquared = x^{**2} + y^{**2}$ if rSquared < 1: hits = hits + 1i = i + 1
- print(hits)

Pi Dartboard 6 Solution

- Finish the dartboard
 - Compute pi as 4.0 * float(hits) / float(throws)
 - Print your pi estimate

- import math import random
- hits = 0 throws = 10
- = 0

 - $rSquared = x^{**2} + y^{**2}$ if rSquared < 1: hits = hits + 1
- pi = 4.0 * float(hits) / float(throws) print(pi)

O

while i < throws:</pre> x = random.random() = random.random()

- The tutor won't let us run lots of darts
- So paste this into a cell in Jupyter on colab.google.com and run it
 - See what happens as you make throws 10**n, n=1,2,3,4,5,6,7

Pi Dartboard 7 import math import random

- throws = 10
- while i < throws:</pre> x = random.random() = random.random()
 - $rSquared = x^{**2} + y^{**2}$ if rSquared < 1: hits = hits + 1

pi = 4.0 * float(hits) / float(throws)

()

Plotting your results

Scatter plots Lists and numpy arrays Pyplot plotting

Scatter plots

- Data: result or output given some input
- Example: dropped marker height vs. time
- Tools to make scatter plots
 - Excel
 - Python
 - Lists of numbers
 - Computations on lists of numbers: numpy arrays
 - pyplot: makes scatter plots

💿 🔵 🔹 AutoSave 🗨 OFF 🗈 🔒 🖬				ດ • ປັ ຈ				Book1				
ŀ	lome Inse	ert Page Layout	t Form	nulas Da	ata Revi	ew Vie	ew					
ſ	Cut	Calibri (Body	/) • 12	• A• /	A- =	= =	35	📑 🖓 Wrap	Text	General		
Pa	aste 💞 Forr	mat B I U		• 💧 • 🗛	• =	≡ ≡	♦ ∃ ♦ ∃	\leftrightarrow Merg	e & Center 🔹	\$ • 9	%)	
014	014 $\stackrel{*}{\checkmark}$ \times \checkmark f_x											
	А	В	с	D	E	F	G	н	· · · · ·	J	к	
1	Time (s)	Height (m)		25								
2	0	2		2.5								
3	0.05	1.98775										
4	0.1	1.951		2	• •							
5	0.15	1.88975				••	•					
6	0.2	1.804		rs)			•					
7	0.25	1.69375		ឆ្លឺ 1.5			•					
8	0.3	1.559		, Ľ				Ĩ.				
9	0.35	1.39975		, jht				Ĩ	-			
10	0.4	1.216		. tei					•			
11	0.45	1.00775		-					۲			
12	0.5	0.775		0.5								
13	0.55	0.51775										
14	0.6	0.236										
15	0.61	0.17671		0								
16	0.62	0.11644			0	0	.2	0.4		0.6		
17	0.63	0.05519					Tin	ne (seo	conds)			
18												

 Values - ordered sets of objects, all the same type (like floats or ints)

• Operators -[], .append()

 Easily add on elements in loops with .append()

SIS

x = [-2.0, -1.0, 0.0, 1.0, 2.0]y = ["Hello", "world"] z = [1, 4, 9, 16]

z.append(25) == [1, 4, 9, 16, 25]

Loop over ists

for i in [1,2,3,4]: print(i*i)

0 1 4

9

import numpy as np print(np.arange(1,5,1)) [1, 2, 3, 4]

import numpy as np myCountArray = np.arange(1,5) myList = []for i in myCountArray: myList.append(i*i) print(myCountArray) print(myList) [1, 2, 3, 4][1, 4, 9, 16]

Clicker question #2.6

• What value does the program print?

x = [1.0, 4.0, 9.0]print(x[1])

• Values - ordered sets of objects, all the same type (like floats or ints)

• Operators - [], +, -, *, /, np.sqrt(), np.sin(), np.cos(),

 Easily do math on whole lists at once (like formulas in Excel)

 $\times [0] == -2.0$ x[1] == -1.0x[4] == 2.0y[0] == "Hello"z[-1] == 16z[0] == 1

Numpy arrays

x = np.array([-2.0, -1.0, 0.0, 1.0, 2.0])y = np.array(["Hello", "world"]) q = np.array([1, 2, 3, 4])r = q * 2

s = q + rz = q * q

> r == np.array([2, 4, 6, 8]) s == np.array([3, 6, 9, 12]) z == np.array([1, 4, 9, 16])

y[-1] == "world"

Naking sample data

- Annoying to type [1,2,3,4,...] all the time
- Instead: np.arange(start, stop, step)
- What do all these numbers mean??
 - Make a plot to visualize them

Try in colab!

import numpy as np x = np.arange(-4.0, 4.0, 0.01)y = np.sin(x) **3print(x) print(y)

-9.99825171e-01-9.99351433e-01-9.98578166e-01-9.97505912e-01	
-9.96135421e-01-9.94467651e-01-9.92503769e-01-9.90245148e-01	
-9.87693366e-01-9.84850205e-01-9.81717651e-01-9.78297888e-01	
-9.74593301e-01-9.70606471e-01-9.66340175e-01-9.61797379e-01	
-9.56981241e-01-9.51895105e-01-9.46542499e-01-9.40927131e-01	
-9.35052889e-01-9.28923832e-01-9.22544191e-01-9.15918365e-01	
-9.09050915e-01 -9.01946561e-01 -8.94610179e-01 -8.87046794e-01	
-8.79261581e-01 -8.71259853e-01 -8.63047062e-01 -8.54628794e-01	
-8.46010761e-01-8.37198799e-01-8.28198860e-01-8.19017011e-01	
-8.09659425e-01-8.00132377e-01-7.90442239e-01-7.80595473e-01	
-7.70598629e-01 -7.60458333e-01 -7.50181290e-01 -7.39774268e-01	
-7.29244102e-01 -7.18597680e-01 -7.07841944e-01 -6.96983877e-01	
-6.86030504e-01-6.74988880e-01-6.63866088e-01-6.52669231e-01	
-6.41405427e-01-6.30081800e-01-6.18705479e-01-6.07283586e-01	
-5.95823237e-01 -5.84331527e-01 -5.72815532e-01 -5.61282298e-01	
-5.49738839e-01 -5.38192126e-01 -5.26649084e-01 -5.15116589e-01	
-5.03601455e-01-4.92110435e-01-4.80650212e-01-4.69227393e-01	
-4.57848505e-01-4.46519990e-01-4.35248195e-01-4.24039375e-01	
-4.12899678e-01-4.01835147e-01-3.90851715e-01-3.79955193e-01	
-3.69151273e-01 -3.58445520e-01 -3.47843366e-01 -3.37350109e-01	
-3.26970907e-01-3.16710771e-01-3.06574566e-01-2.96567003e-01	
-2.86692639e-01 -2.76955868e-01 -2.67360924e-01 -2.57911871e-01	

Plotting sample data Try in colab!

Make plots with pyplot

import numpy as np import matplotlib from matplotlib import pyplot as plt matplotlib.rc('axes', labelsize=18) matplotlib.rc('xtick', labelsize = 18) matplotlib.rc('ytick', labelsize = 18)

x = np.arange(-4.0, 4.0, 0.01)
y = np.sin(x)**3

plt.clf() #clear figure
plt.plot(x,y, color='b')
plt.xlabel('x')
plt.ylabel('sin^3(x)')
plt.show()

Х

Functions

- Input(s) ("arguments")
- Returns output
- Functions can call other functions

Try in tutor! def square(x): return x*x square(4) 16

Activity in the tutor

- Define a function that takes a decimal x and returns cos(cos(x))
 - Hint: use math.cos()
- Print the result for some test number

Activity in the tutor

- Define a function "cos2Times" that takes a decimal x and returns $\cos(\cos(x))$
 - Hint: use math.cos()
- Print the result

import math def cos2Times(x): return math.cos(math.cos(x)) print(cos2Times(44.44)) print(cos2Times(0.0))

i = 0while i < 4: print(i*i) i = i + 1

0

As you increase n, what does cosNTimes give you?

import math i = 0

Challenge solution

- def cos2Times(x):
 - return math.cos(math.cos(x))
- def cosNTimes(x, n):
 - result = x
 - while i < n:
 - result = math.cos(result)
 - i = i + 1return result
- print(cos2Times(4.444)) print(cosNTimes(4.444, 2)) print(cosNTimes(4.444, 500))

Potting T

Activity: edit your code

- Make everything but the last two lines inside a function that takes one input, n
- Instead of setting throws = 10, set throws=n
- Return the pi estimate

import math import random

- while i < throws:</pre>
 - x = random.random()
 - = random.random()
 - $rSquared = x^{**2} + y^{**2}$ if rSquared < 1: hits = hits + 1= i + 1

= 4.0 * float(hits) / float(throws)

Solution

• Activity: edit your code

- Make everything but the last two lines inside a function that takes one input, n
- Instead of setting throws = 10, set throws=n
- Return the pi estimate

import math import random

i = 0

pi = 4.0 * float(hits) / float(throws) return pi

```
def estimatePi(throws):
  hits = 0
  while i < throws:</pre>
      x = random.random()
      y = random.random()
```

 $rSquared = x^{**2} + y^{**2}$ if rSquared < 1:</pre> hits = hits + 1i = i + 1

print(estimatePi(le4))

Potting m 2

Activity: edit your code

- Make a list of different numbers of throws: 10, 100, 1000, ... up to 1e7
- Make an empty list called piEstimates
- Loop over the list you made, estimating π for different numbers of throws

import math import random

return pi

print(estimatePi(1e4))

def estimatePi(throws): # (same definition of estimatePi function here)

Plotting π solution 2

Activity: edit your code

- Make a list of different numbers of throws: 10, 100, 1000, ... up to 1e7
- Make an empty list called piEstimates
- Loop over the list you made, estimating π for different numbers of throws

import math import random

def estimatePi(throws): # (same definition of estimatePi function here) return pi

throwsList = [1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7] piEstimatesList = [] for throws in throwsList: piEstimatesList.append(estimatePi(throws)) print(piEstimatesList)

Potting m 3

- Activity: edit your code
 - Don't print piEstimatesList
 - Instead, make a scatter plot of throwsList vs. piEstimatesList
 - Use a log scale on the x axis: plt.xscale('log')

import math import random

def estimatePi(throws): # (same definition of estimatePi function here) return pi

throwsList = [1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7] piEstimatesList = [] for throws in throwsList: piEstimatesList.append(estimatePi(throws)) print(piEstimatesList)

Solution 3

- Activity: edit your code
 - Don't print piEstimatesList
 - Instead, make a scatter plot of throwsList vs. piEstimatesList
 - Use a log scale on the x axis: plt.xscale('log')

import math import random import matplotlib

def estimatePi(throws): # (same definition of estimatePi function here) return pi

plt.clf() plt.show()

```
import numpy as np
from matplotlib import pyplot as plt
matplotlib.rc('axes', labelsize=18)
matplotlib.rc('xtick', labelsize = 18)
matplotlib.rc('ytick', labelsize = 18)
```

```
throwsList = [1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7]
piEstimatesList = []
for throws in throwsList:
    piEstimatesList.append(estimatePi(throws))
```

```
plt.plot(throwsList, piEstimatesList)
plt.xlabel('Number of throws')
plt.xscale('log')
plt.ylabel('Estimate of pi')
```


Accuracy of the π dart board

- As throws goes up, answer gets closer to pi
- But it's hard to see how close it is later on
- So instead, plot the difference between the estimate and the real answer

Estimate of pi 3.2

3.6

Potting π4

- Challenge: edit your code
 - import numpy as np
 - piEstimates = np.array(piEstimatesList)
 - Plot throwsList vs. abs(piEstimates - math.pi)
 - Put y axis on a log scale
 - Update y axis label to be abs(estimate of pi - pi)

plt.clf() plt.show()

... code that computes pi

```
throwsList = [1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7]
piEstimatesList = []
for throws in throwsList:
    piEstimatesList.append(estimatePi(throws))
plt.plot(throwsList, piEstimatesList)
plt.xlabel('Number of throws')
plt.xscale('log')
plt.ylabel('Estimate of pi')
```


Solution 4

- Challenge: edit your code
 - import numpy as np
 - piEstimates = np.array(piEstimatesList)
 - Plot throwsList vs. abs(piEstimates - math.pi)
 - Put y axis on a log scale
 - Update y axis label to be abs(estimate of pi - pi)

plt.clf() plt.xscale('log') plt.yscale('log') plt.show()

... code that computes pi

```
throwsList = [1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7]
piEstimatesList = []
```

- **for** throws **in** throwsList:
 - piEstimatesList.append(estimatePi(throws))

```
piEstimates = np.array(piEstimatesList)
plt.plot(throwsList, abs(piEstimates - math.pi))
plt.xlabel('Number of throws')
plt.ylabel('abs(Estimate of pi - pi)')
```

pi - pi)	10 ⁻¹	
late of	10 ⁻²	
s(Estim	10 ⁻³	
ab	10 ⁻⁴	
		102

Concepts in numerical programming

Resolution

Accuracy

Precision

Resolution

Low resolution Entire image: 227KB

Large galaxies 1 *billion light years away*

Small galaxies up to 13 billion light years away

Image courtesy NASA

High resolution Entire image: 110MB

Large galaxies 1 *billion light years away*

Small galaxies up to 13 billion light years away

Image courtesy NASA

Resolution

Resolution

- Low resolution
 - Smaller data
 - Faster computation
 - Less precise
- High resolution
 - Bigger data
 - Slower computation
 - More precise

Precision

- How much result changes when you add more resolution
- "How many digits"

Accuracy

 How close result is to the correct result

Example: thermal noise

 Thermal noise of a mirror in LIGO depends on how much potential energy it gets when you push on the face

Color = how much mirror deforms

Lovelace, Demos, Khan (2018)

Example: thermal noise

- Potential energy *E* in deformed mirror
 - Precision of energy as resolution increases
 - Label resolution by integer N

AlGaAs (effective isotropic)

Higher resolution

Lovelace, Demos, Khan (2018)

Example: thermal noise

- Thermal noise of thin coating
 - Accuracy: compare code to known "analytic" solution

Lovelace, Demos, Khan (2018)

Clicker question #2.7a

of throws. The horizontal axis shows

Your graph plots abs(estimate of pi - pi) vs number

Clicker question #2.7b

of throws. The vertical axis shows

Your graph plots abs(estimate of pi - pi) vs number

Clicker question #2.7c

• As the number of throws increases, the resolution

Clicker question #2.7d

• As the number of throws increases, the accuracy

Example: π dart board

- Need roughly 100x
 more darts to get 10x
 more accuracy
 - That is, 100x darts gives you 10x more accuracy
 - This gets slow fast!
 - Can we do better?

pi - pi)	10 ⁻¹	
late of	10 ⁻²	
s(Estim	10 ⁻³	
ab	10 ⁻⁴	

Goal of next activity

- Run a calculation that simulates pushing on the mirror, computes thermal noise
- To do this, need to learn some UNIX

Unix terminal on the web

NRDataExample/master

Choose "New Terminal"

Go to <u>https://mybinder.org/v2/gh/geoffrey4444/</u>

UNIX command line crash course activity

- Commands to know
 - Is, pwd, cd, mkdir
 - ./, ../, paths
 - cp, mv, rm, rmdir
 - cat, less
 - nano
 - whoami, date, ...

- Play along with me...
 - mkdir YOURNAME and cd into it
 - Navigate file system: Is, pwd, cd, ./ and ../
 - Use nano to write a text file
 - Copy, rename, remove a file
 - Cat, less, more, head, tail
 - > to redirect output
 - Grab bag: whoami, date, grep, sed, zip...

Unix commands to know

- Commands to know
 - Is, pwd, cd, mkdir
 - ./, ../, paths
 - cp, mv, rm, rmdir
 - cat, less
 - nano
 - whoami, date, ...

- Play along with me...
 - mkdir YOURNAME and cd into it
 - Navigate file system: Is, pwd, cd, ./ and ../
 - Use nano to write a text file
 - Copy, rename, remove a file
 - Cat, less, more, head, tail
 - > to redirect output
 - Grab bag: whoami, date, grep, sed, man,
command would I use?

S

CC

• I want to list the files in the directory I'm in. Which

pwd

nano

• Which command edits the file "Hello.txt" in the directory I am currently in?

nano ./Hello.txt

cat ./Hello.txt

nano ../Hello.txt

cat ../Hello.txt

 Which command makes a new directory called "TestFolder"?

Is TestFolder

cd TestFolder

mkdir TestFolder

cp TestFolder

- directory, which is not empty?
 - rmdir ./
 - rm -r ./*
 - rm -r . /*

More than one of these will work

• Which command removes everything in the current

- Commands to know
 - Is, pwd, cd, mkdir
 - ./, ../, paths
 - cp, mv, rm, rmdir
 - cat, less
 - nano
 - whoami, date, ...

Unix activity

• Use nano to write a bash script (each line is a command like you would enter on the command line)

• The script should...

- Print the current date and time
- Print the current directory
- Copy /proc/cpuinfo into the current directory
- Get the first line of the copied file, and save it to a file called FirstLineOfProc.txt
- Bonus: Use grep to only show the line with "cpu cores"
- Bonus: use sed to remove all but the core number
- Bonus: instead of copying the /proc/cpuinfo file, copy whatever file users specify as an argument (google bash arguments)

- Supercomputers have lots of cores
- But each core is not much faster than a PC
- To take full advantage, you have to write code that can run on more than one core at the same time
 - That is, code that runs in parallel

Image courtesy Blue Waters

- Log into orca
- Do this

#Replace GeoffreyLovelace with YourName cd GeoffreyLovelace

mkdir PiDart cd PiDart

source /share/apps/python/2.7.15/bin/activate #set up python

- •Log into binder: <u>mybinder.org</u>, load geoffrey4444/ NRDataExample
- •nano Hello.py

print("Hello")

- •mpirun -np 8 python Hello.py
 - •What happens? What happens if you change 8 to another number less than 8?

What happened?

- mpirun ran many copies of "Hello.py"
- Each copy printed "Hello"
 - But the processors are not working together yet, or even doing anything different
- Next: make different processors do different things

- cp Hello.py MpiHello.py
- •nano MpiHello.py

from mpi4py import MPI comm = MPI.COMM WORLDrank = comm.Get rank() size = comm.Get size() "+str(size))

• mpirun -np 4 python MpiHello.py

•mpirun -np 8 python MpiHello.py

print("Hello from processor "+str(rank)+" out of

Paralleizing the dartboard

- What if we combined results from the whole class's π dartboard?
- Even batter
 - Run lots of copies of the dartboard on lots of cores
 - At the end, each copy tells the others how many hits it had
 - Each copy adds up the number of hits on all processors and computes pi

Parallelizing the dartboard 2 cp /home/workshopStudent2018/SharedStuff/Tuesday/

- piEstimate.py .
- nano piEstimate.py
- #Add the same mpi4py lines at the top

from mpi4py import MPI comm = MPI.COMM WORLDrank = comm.Get rank() size = comm.Get size()

- nano piEstimate.py
- hits on each processor

- "+str(throws)+" throws.")
- mpirun -np 12 python piEstimate.py
 - What happens?

Parallelizing the dartboard 3

• #At the bottom, instead of getting pi, print the number of

print(str(hits)+" hits on processor "+str(rank)+" out of

- nano piEstimate.py
- #Divide the darts to throw among the processors, instead of each processor throwing the total

•mpirun -np 12 python piEstimate.py • What happens?

Parallelizing the dartboard 4

hits = 0throws = 1e7 // sizei = 0while i < throws:</pre> # ... rest of program

• nano piEstimate.py

#Have on processor add up the totals across all processors

print(str(hits)+" hits on processor "+str(rank)+" out of "+str(throws)+" throws.")

throwsAllProcessors = throws * size hitsAllProcessors = comm.allreduce(hits, op=MPI.SUM)

if rank == 0: print(str(hitsAllProcessors)+" hits on all processors, with "+str(throwsAllProcessors)+" throws.")

• nano piEstimate.py

• #Compute pi

if rank == 0: print(str(hitsAllProcessors)+" hits on all processors, with "+str(throwsAllProcessors)+" throws")

pi = 4.0 * float(hitsAllProcessors) / float(throwsAllProcessors) print(pi)

- nano piEstimate.pv
- How long does it take?
- import time • At top: start = time.time()
- At bottom

print(pi) end = time.time()

Parallelizing the dartboard 7

print("Run in "+str(end-start)+" seconds.")

How many darts can we run on the entire cluster?

- 1e7 on on core
- About 500 cores
- So in the same time, we should be able to run 500e7 = 5e9

Modeling Thermal Noise in Gravitational-Wave Detectors

How small is 10-21?

- Fractional length change: 10⁻²¹
- Suppose circle radius = 4 km (2.5 miles)
- Then positions of red balls change by 10⁻¹⁸ m
- How small is that?
 - Human height 1 m
 - ÷10000 Human hair width
 - Wavelength of light ÷100
 - ÷10000 Size of atom
 - ÷100000 Size of proton
 - 10⁻¹⁸ m (LIGO) ÷1000

How could we possibly hope to measure this?

Movie courtesy LIGO

Measuring mirror position

- LIGO measures positions of mirrors
 - Gravitational waves change the distance between mirrors
 - To measure: Shine laser (lots of light particles ("photons")) on mirror
 - Measured position is average of the many positions measured by the many photons
- But surface is fluctuating...

166

Thermal motion

Image credit LIGO

Rutger Saly, YouTube, "We filmed Brownian motion, random movement of particles in water..."

Reducing coating thermal motions

- Larger beam spots on mirrors
- Longer arms
- Improved mechanical loss in optical coatings
 - Goal of Center for Coating Research (Stanford, Syracuse, Fullerton, et al.)
- Cryogenically cool mirrors
 - Being pioneered in Japan's KAGRA

Modeling thermal noise

- Fluctuation dissipation theorem Levin 1997
 - –Push on mirror at temperature T with pressure
 - at freq. f, beam shape
 - -Then fluctuations S_x depend on power dissipated W_{diss}
 - -T = Temperature in Kelvin $= (^{\circ}C + 273)$
 - $8W_{\rm diss}k_BT$ $4\pi^2 f^2 F_0^2$

• If you cut the temperature in half, the coating Brownian thermal noise would be

- - B
- 2 times larger
- 2 times smaller

4 times larger

4 times smaller

• If you cut the temperature (in Kelvins) in half in this room, the room would be Colder, but not uncomfortable Uncomfortably cold but livable B

Room temperature $= 68^{\circ}F = 20^{\circ}C$

Kelvins $= (^{\circ}C + 273)$

Too cold for us to live

Model thermal noise II

- Commands to know
 - Is, pwd, cd, mkdir
 - ./, ../, paths
 - cp, mv, rm, rmdir
 - cat, less
 - nano
 - whoami, date, ...

- Play along with me...
 - Tail Energy.dat
 - Download the *vtk files
 - Open these files in ParaView and explore them

The π dartboard on a supercomputer

Idea of parallel computing

Activity

- Gravitational-wave concepts (with Jocelyn)
- Explore data from simulations of merging black holes
- Compare accuracy and speed for head-on collision vs res
- (Choose one head-on collision and submit it)

Day 3

Connect to orca

- Open "PuTTY 64-bit" on the desktop
- Under "saved sessions" select "orca"
- Click "Open"
- Username: workshopStudent2018
- Passphrase
 - Front 2 rows: fullertonGW!
 - Back 2 rows: FullertonGW!

UNIX command line crash course activity

- Commands to know
 - Is, pwd, cd, mkdir
 - ./, ../, paths
 - cp, mv, rm, rmdir
 - cat, less
 - nano
 - whoami, date, ...

- Play along with me...
 - mkdir YOURNAME and cd into it
 - Navigate file system: Is, pwd, cd, ./ and ../
 - Use nano to write a text file
 - Copy, rename, remove a file
 - Cat, less, more, head, tail
 - > to redirect output
 - Grab bag: whoami, date, grep, sed, zip...

Unix commands to know

- Commands to know
 - Is, pwd, cd, mkdir
 - ./, ../, paths
 - cp, mv, rm, rmdir
 - cat, less
 - nano
 - whoami, date, ...

- Play along with me...
 - mkdir YOURNAME and cd into it
 - Navigate file system: Is, pwd, cd, ./ and ../
 - Use nano to write a text file
 - Copy, rename, remove a file
 - Cat, less, more, head, tail
 - > to redirect output
 - Grab bag: whoami, date, grep, sed, man,

command would I use?

S

CC

• I want to list the files in the directory I'm in. Which

pwd

nano

• Which command edits the file "Hello.txt" in the directory I am currently in?

nano ./Hello.txt

cat ./Hello.txt

nano ../Hello.txt

cat ../Hello.txt

 Which command makes a new directory called "TestFolder"?

Is TestFolder

cd TestFolder

mkdir TestFolder

cp TestFolder
Clicker question #1.9

- directory, which is not empty?
 - rmdir ./
 - rm -r ./*
 - rm -r . /*

More than one of these will work

• Which command removes everything in the current

Start your own simulation of merging black holes

- Start from rest, collide head-on
- Choose mass ratio between 1 and 1.2
- Choose spin = 0,0,0 on the smaller black hole (B)
- Choose spin = 0,0,X on the larger black hole (A), where X is between 0 and 0.2
- Set Omega0 = 0, adot0=0, D0=35

cd \$HOME cd YOURNAME mkdir BlackHoleMerger cd BlackHoleMerger source /home/workshopStudent2018/SharedStuff/Wednesday/spec/ MakefileRules/this machine.env PrepareID -t bbh2 -no-reduce-ecc nano Params.input # 0 mega 0 = 0.0# adot0 = 0.0# D0 = 35.0# MassRatio = 1.2 #or 1.0, or something in between of 0.1# @SpinB = (0.0, 0.0, 0.0)nano Ev/DoMultipleRuns.input # MaxLev = 1./StartJob.sh

@SpinA = (0.0, 0.0, 0.0) #can make 1 component up to 0.2 instead

qstat qstat -f YOURJOBNUMBER ShowQueue

<u>orca.fullerton.edu/ganglia</u>

- Commands to know
 - Is, pwd, cd, mkdir
 - ./, ../, paths
 - cp, mv, rm, rmdir
 - cat, less
 - nano
 - whoami, date, ...

Unix activity

• Use nano to write a bash script (each line is a command like you would enter on the command line)

• The script should...

- Print the current date and time
- Print the current directory
- Copy /proc/cpuinfo into the current directory
- Get the first line of the copied file, and save it to a file called FirstLineOfProc.txt
- Bonus: Use grep to only show the line with "cpu cores"
- Bonus: use sed to remove all but the core number
- Bonus: instead of copying the /proc/cpuinfo file, copy whatever file users specify as an argument (google bash arguments)

10	NAME	FINAL	ALTERNATE
ž	THE DECADE	FRONTIERS	MEANINGS
	\$200	\$200	
0	\$400	\$400	
0	\$600	\$600	\$600
0	\$800	\$800	\$800
0	\$1000	\$1000	\$1000

Curved spacetime

"Matter tells space-time how to curve and space-time tells matter how to move." — John A. Wheeler

Larry Kiwano, Astrocamp, November 7, 2013

What are black holes?

- Gravity so strong...
 –Nothing (even light) can escape from inside hole's horizon (surface)
- Formed when the most massive stars die

Movie courtesy J Burk

How big are black holes?

- Mass: huge! -Two kinds -3 to 70 -Millions+
- Radius: small! $r = \frac{2G}{c^2} M = 3 \text{ km}^2$ mass

Images courtesy wikipedia

Size of earth-mass black hole

Size of 10- 🎇 black hole

Clicker question #3.1

 A black hole's circumference has doubled. The hole's mass has

How to observe black holes?

Indirectly

- -Gravity affects motion
 - of objects nearby: infer mass
- -Gas heats up & glows as it falls in: infer spin (uncertain!)

Cygnus X-1

First black hole discovered $M/M_{
m sun} pprox 15$ $\chi \gtrsim 0.983$ — Gou *et al.* (2014)

Images courtesy NASA, ESO/VLT

Sagittarius A* Black hole at center of our galaxy $M/M_{sun} \approx 4 \times 10^{6}$ $\chi \approx 0$ —Broderick *et al.* (2010)

193

20-year time lapse

ESO very large telescope

Movie courtesy ESO...2 weeks ago

around the sun, it will...

A Orbit once each Earth year, the same as Earth.

B Orbit much faster than Earth, circling many times in each Earth year.

C Orbit much slower than Earth, taking many Earth years to complete one cycle

Quickly fall into the black hole

If a planet is in a circular orbit of a 1 Solar Mass black hole, with the same radius as Earth's orbit

Clicker question 3.2

If the Sun was suddenly replaced with a black hole of the same mass, what would happen to Earth?

B It would continue in its orbit exactly as before

C It would spiral into the black hole

It would continue to orbit, but the orbit would be much smaller

- A It would be ejected from the solar system

Clicker question 3.3

Black holes rotate and warp time

An experiment (not to scale)

Black hole spin 0% of maximum $\chi = 0$

0

-2

-4

Haroon dives in head-on

Geoffrey observes from a safe distance

Geoffrey still observes from a safe distance

Linear and nonlinear physics

• Linear

- -Whole is sum of parts
- -Example: sound in this room
- -Total sound = sum of individual sounds

Nonlinear

- -Whole is more
 - than sum of parts
- -Example: water + wind
- -Example: two black holes
- -Need supercomputers

Images courtesy Kip Thorne

Single black hole

Colliding black holes

Merging black holes & gravitational waves

200

Colliding binary black holes that led to gravitational-wave signals detected during the 1st and 2nd Advanced LIGO and Advanced Virgo observing runs

GW150914

MM

GW151226

WW

Time: -0.51 seconds

GW170104 GW170608 **WWW** \sim

Movie by CSUF student Teresita Ramirez, Simulating eXtreme Spacetimes collaboration

(IO))VIRGO ST

Colliding binary black holes that led to gravitational-wave signals detected during the 1st and 2nd Advanced LIGO and Advanced Virgo observing runs

Time: -0.67 seconds

Supercomputer simulations of colliding black holes

-Strategy

- 1. Solve Einstein's constraint equations for first frame
- 2. Solve Einstein's evolution equations for next frame
- 3. Go back to step 2

Images courtesy Kip Thorne

-Goal: solve Einstein's equations for warped spacetime

Example constraint:

magnetic field lines are loops with no ends

Challenges

-Einstein equations hard to solve

- Nonlinear: sum of solutions not a solution
- Singularities
- Keep constraint equations satisfied
 - -Must write the equations in just the right way -Must treat the boundaries in just the right way
- Computationally expensive

-Many different binaries (different masses & spins): need many different simulations!

Images courtesy Kip Thorne

Example constraint: magnetic field lines are loops with no ends

Supercomputer simulations of colliding black holes

-Spectral Einstein Code (SpEC) black-holes.org/SpEC.html

- Developed by the Simulating eXtreme Spacetimes collaboration
- And many other groups, codes, following Pretorius (2005)

Images courtesy Evan Foley, SXS Collaboration

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)

205

KS Thorne, "Spacetime warps and the quantum world: speculations about the future", in RH Price, ed, *The Future of Spacetime* (WW Norton, NY, 2002) "I have bet these numerical relativists that gravitational waves will be detected from black-hole collisions before their computations are sophisticated enough to simulate them. I expect to win, but hope to lose, because the simulation results are crucial to interpreting the observed waves." — Kip Thorne

the quantum world: speculations about the future", in RH Price, ed, The Future of Spacetime (WW Norton, NY, 2002)

Abbott+, PRL **116**, 061102 (2016)

Warped spacetime dynamics

Horizons shaded by their curvature Orbits as black holes spiral together

Waveform prediction

Calibrate, validate analytic templates used in template reconstruction

Fullerton's role

Students, GL: perform the supercomputer calculations Solve Einstein's equations for merging black holes + gravitational waves Create movies visualizing this computation

Josh Smith, Jocelyn Read, GL: design, create the figure

Clicker question #3.4

Jennifer Sanchez (CSUF undergraduate) used numerical relativity to model a neutron star being torn apart by a black hole.

To make the data for this movie, the SpEC code solved...

Time: 8365.000000

the Einstein evolution equations once

the Einstein evolution equations many times

the Einstein constraint equations many times

None of ABC

Explore data for numerical relativity simulation of merging black holes

- Orbit
- Mass vs. time
- Strength of gravitational waves
- Resolution vs. "accuracy" and speed
- - <u>https://github.com/geoffrey4444/</u> NRDataExample.git

Load this github page in <u>colab.research.google.com</u>

Gravitational-Wave Concepts Jocelyn Read

Play with gravitational waves in Python

Jocelyn Read

- Go to colab.research.google.com
- **PyCBC-Tutorials**
- Load tutorial/3_WaveformMatchedFilter.ipynb
- We'll run through this notebook together

Play with gravitational waves in Python

Load the GitHub repo <u>https://github.com/gwastro/</u>

Save an audio file of your model waveform , open in audacity

• Try changing the masses to 5, or the spins to 0.99

Play with gravitational waves in Python from scipy.io import wavfile import numpy as np

hp, hc = get td waveform(approximant="SEOBNRv4_opt", massl=10, spin1z=0, mass2=10, spin2z=0, delta t=1.0/4096, f lower=30.0)

files.download(fileName)

 $fileName = 'BBH_5_5_0_0.wav'$ wavfile.write(fileName, 4096.0, np.array(hp)/max(hp)) from google.colab import files

Clicker question #3.5

A gravitational-wave detector detects 4 waves. Each wave starts at the same frequency. Which one came from black holes with the largest total mass?

Clicker question #3.6

A gravitational-wave detector detects 4 waves. Each wave starts at the same frequency. Which one came from black holes with the smallest total mass?

Clicker question #3.7

A gravitational-wave detector detects 4 waves. Each wave came from binary black holes that are identical except for how far away they are. Which wave's source was **closest** to the detector?

Clicker question #3.8

A gravitational-wave detector detects 4 waves. Each wave came from binary black holes that are identical except for how far away they are. Which wave's source was **farthest** from the detector?

Simulations help LIGO observe more waves

- Compare LIGO observations to predictions of relativity
- Help LIGO observe more waves
 –We help LIGO know what the waves

will "sound like"

–Like hearing your name in a crowded room How are the binary black hole simulations going, Dan?

© JessicaFranz Photographi

Simulations help LIGO observe more waves

- Compare LIGO observations to predictions of relativity
- Help LIGO observe more waves
 - -We help LIGO know what the waves will "sound like"

-Like hearing your name my brother, Jason, in a crowded room

What's my brother saying about me? Have you met Dan?

- science research
- Student researchers present
- Data center tour

Day 4

Invited speakers: cutting-edge gravitational-wave

Unix terminal on the web

NRDataExample/master

Choose "New Terminal"

Go to <u>https://mybinder.org/v2/gh/geoffrey4444/</u>

- Supercomputers have lots of cores
- But each core is not much faster than a PC
- To take full advantage, you have to write code that can run on more than one core at the same time
 - That is, code that runs in parallel

Image courtesy Blue Waters

- Log into orca
- Do this

#Replace GeoffreyLovelace with YourName cd GeoffreyLovelace

mkdir PiDart cd PiDart

source /share/apps/python/2.7.15/bin/activate #set up python

- •Log into binder: <u>mybinder.org</u>, load geoffrey4444/ NRDataExample
- •nano Hello.py

print("Hello")

- •mpirun -np 8 python Hello.py
 - •What happens? What happens if you change 8 to another number less than 8?

What happened?

- mpirun ran many copies of "Hello.py"
- Each copy printed "Hello"
 - But the processors are not working together yet, or even doing anything different
- Next: make different processors do different things

- cp Hello.py MpiHello.py
- nano MpiHello.py

from mpi4py import MPI comm = MPI.COMM WORLDrank = comm.Get rank() size = comm.Get size() "+str(size))

• mpirun -np 4 python MpiHello.py

•mpirun -np 8 python MpiHello.py

print("Hello from processor "+str(rank)+" out of

Paralleizing the dartboard

- What if we combined results from the whole class's π dartboard?
- Even batter
 - Run lots of copies of the dartboard on lots of cores
 - At the end, each copy tells the others how many hits it had
 - Each copy adds up the number of hits on all processors and computes pi

Parallelizing the dartboard 2 cp /home/workshopStudent2018/SharedStuff/Tuesday/

- piEstimate.py .
- nano piEstimate.py
- #Add the same mpi4py lines at the top

from mpi4py import MPI comm = MPI.COMM WORLDrank = comm.Get rank() size = comm.Get size()

- nano piEstimate.py
- hits on each processor

- "+str(throws)+" throws.")
- mpirun -np 12 python piEstimate.py
 - What happens?

Parallelizing the dartboard 3

• #At the bottom, instead of getting pi, print the number of

print(str(hits)+" hits on processor "+str(rank)+" out of

- nano piEstimate.py
- #Divide the darts to throw among the processors, instead of each processor throwing the total

•mpirun -np 12 python piEstimate.py • What happens?

Parallelizing the dartboard 4

hits = 0throws = 1e7 // sizei = 0while i < throws:</pre> # ... rest of program

• nano piEstimate.py

#Have on processor add up the totals across all processors

print(str(hits)+" hits on processor "+str(rank)+" out of "+str(throws)+" throws.")

throwsAllProcessors = throws * size hitsAllProcessors = comm.allreduce(hits, op=MPI.SUM)

if rank == 0: print(str(hitsAllProcessors)+" hits on all processors, with "+str(throwsAllProcessors)+" throws.")

• nano piEstimate.py

• #Compute pi

if rank == 0: print(str(hitsAllProcessors)+" hits on all processors, with "+str(throwsAllProcessors)+" throws")

pi = 4.0 * float(hitsAllProcessors) / float(throwsAllProcessors) print(pi)

- nano piEstimate.pv
- How long does it take?
- import time • At top: start = time.time()
- At bottom

print(pi) end = time.time()

Parallelizing the dartboard 7

print("Run in "+str(end-start)+" seconds.")

How many darts can we run on the entire cluster?

- 1e7 on on core
- About 500 cores
- So in the same time, we should be able to run 500e7 = 5e9

Clicker question #3.6

A gravitational-wave detector detects 4 waves. Each wave starts at the same frequency. Which one came from black holes with the smallest total mass?

Clicker question #3.7

A gravitational-wave detector detects 4 waves. Each wave came from binary black holes that are identical except for how far away they are. Which wave's source was **closest** to the detector?

- simulations
- Research experience panel
- Transfer to 4-year, CSUF, panel

Day 5

ParaView visualizations: movies and stills from their

#connect to orca cd YOURNAME/BlackHoleMerger ArchiveBbhRuns.py -v --no-cce --contactemail=geoffrey4444@gmail.com . cd BBH*/Lev1/ ConvertH5SurfaceToVtk -v -s 10 -l 1500 -dir AhC.dir HorizonsDump.h5 mkdir Vis mv Ah* Vis zip Vis zip -r Vis.zip Vis #download to laptop, make movie in ParaView

ConvertH5SurfaceToVtk -v -s 2 -dir AhA.dir HorizonsDump.h5 ConvertH5SurfaceToVtk -v -s 2 -dir AhB.dir HorizonsDump.h5

#save frames, upload to orca module load ffmpeg ffmpeg -framerate 30 -i BeforeMerger.%04d.png pix fmt yuv420p -codec:v libx264 BeforeMerger.mp4 ffmpeg -framerate 30 -i AfterMerger.%04d.png -r 60 -pix fm yuv420p -codec:v libx264 AfterMerger.mp4 Nano FilesToJoin.txt # each line should be as follows: # file 'BeforeMerger.mp4' # file 'AfterMerger.mp4' ffmpeg -f concat -i FilesToConvert.txt -c copy BeforeAndAfterMerger.mp4 # download 'BeforeAndAfterMerger.mp4'

-r 60

<u>http://fullerton.gualtrics.com/jfe/form/</u> <u>SV ehAa6CwHaxMMeJT</u>

